Updates on the Book

1. Page 47, Exercise 16.4

In the expansion of $\frac{5x+3-\frac{30}{k}}{(3+kx)^2}$, the coefficient of x^2 is $-\frac{37}{27}$, where 0 < k < 10.

2. Page 93, Exercise 30.1

The vector equations of the lines L_1 and L_2 are $\mathbf{r} = \begin{pmatrix} 15 \\ 11 \\ 6 \end{pmatrix} + t \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 0 \\ 7 \\ 8 \end{pmatrix} + s \begin{pmatrix} -3 \\ 2 \\ 6 \end{pmatrix}$ respectively.

D is a point on L_3 such that the coordinates of D are (73, -205, d).

(d) Find the value of d.

[2]

(e) Hence, show that the volume of the pyramid ABCD is $\frac{12005}{3}$. [4]

3. Page 94, Exercise 30.3

(e) U is a point such that UQ is perpendicular to QRST, and the volume of the pyramid QRSTU is $166\sqrt{29}$.

4. Page 100, Exercise 32.3

(a) Show that the vector equation of the line of intersection of the planes π_1 and π_2 is $\mathbf{r} = \begin{pmatrix} 0 \\ -12 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

5. Page 202, Exercise 65.1

(b) By using the Maclaurin series for $e^{2x} - 1$ and $\ln(1+x)$, find the Maclaurin series for $\ln \left[(3e^{2x} - 2)(4e^{2x} - 3) \right]$ up to and including the x^2 term.

[9]

(c) Hence, find
$$\lim_{x\to 0} \frac{2 + \ln\left[(3e^{2x} - 2)(4e^{2x} - 3)\right]}{f(x)}$$
.

[3]

6. Page 214, Example 70

The initial acceleration and the initial velocity are $\sqrt{3}$ ms⁻² and $\ln \frac{\sqrt{3}}{2}$ ms⁻¹ respectively.

(d) Show that
$$v = -\frac{1}{2} \ln \left(\frac{a^2 + 9}{9} \right)$$
.

7. Page 215, Example 70

(b) Let
$$u = \cos\left(-3t + \frac{\pi}{6}\right)$$
. (M1) for substitution
$$\frac{du}{dt} = 3\sin\left(-3t + \frac{\pi}{6}\right) \Rightarrow 3\sin\left(-3t + \frac{\pi}{6}\right) dt = du$$

$$dt \qquad (6) \qquad (6)$$

$$\therefore \int dv = \int \frac{1}{u} du$$

$$v = \ln u + D$$

$$v = \ln \left| \cos \left(-3t + \frac{\pi}{6} \right) \right| + D$$
 A1

$$\ln \frac{\sqrt{3}}{2} = \ln \left| \cos \left(-3(0) + \frac{\pi}{6} \right) \right| + D$$
(M1) for substitution

$$\ln\frac{\sqrt{3}}{2} = \ln\frac{\sqrt{3}}{2} + D$$

$$D = 0$$
 (A1) for correct value

$$\therefore v = \ln \left| \cos \left(-3t + \frac{\pi}{6} \right) \right|$$
 A1

Your Practice Set - Analysis and Approaches for IBDP Mathematics

8. Page 216, Example 70

(c)
$$= \int_0^{\frac{\pi}{8}} \left| \ln \left| \cos \left(-3t + \frac{\pi}{6} \right) \right| \right| dt$$

(d)
$$v = \ln \left| \cos \left(-3t + \frac{\pi}{6} \right) \right|$$

$$v = -\ln\left|\frac{1}{\cos\left(-3t + \frac{\pi}{6}\right)}\right|$$

$$v = -\ln\left|\sec\left(-3t + \frac{\pi}{6}\right)\right|$$
 A1

M1

$$v = -\frac{1}{2} \ln \left(\sec^2 \left(-3t + \frac{\pi}{6} \right) \right)$$

$$v = -\frac{1}{2}\ln\left(\tan^2\left(-3t + \frac{\pi}{6}\right) + 1\right)$$
 A1

$$\therefore v = -\frac{1}{2} \ln \left(\left(\frac{a}{3} \right)^2 + 1 \right)$$
 A1

$$v = -\frac{1}{2} \ln \left(\frac{a^2}{9} + 1 \right)$$

$$v = -\frac{1}{2} \ln \left(\frac{a^2 + 9}{9} \right)$$
 AG

9. Page 243, Exercise 79.2

(c) the standard deviation.

10. Page 275, Answers of Exercise 30

(c)
$$\begin{cases} x = 3 + 2u \\ y = 5 - 6u \\ z = 2 + 3u \end{cases}$$

(d)
$$d = 107$$

(e) Refer to solution

Your Practice Set – Analysis and Approaches for IBDP Mathematics

11. Page 284, Answers of Exercise 65

- **65.1 (b)** $14x 36x^2 + \cdots$
 - (c)

12. Page 285, Answers of Exercise 71

71.4 (b) 141120