Formula List of

Analysis and Approaches

Higher Level

for IBDP Mathematics

	Intensive Notes by Topics here		IBDP Maths Info. \& Exam Tricks here
	Exam \& GDC Skills Video List here		More Mock Papers \& Marking Service here

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

1
Standard Form
$\checkmark \quad$ Standard Form:
A number in the form $(\pm) a \times 10^{k}$, where $1 \leq a<10$ and k is an integer

2 Quadratic Functions

$\checkmark \quad$ General form $y=a x^{2}+b x+c$, where $a \neq 0$:

$a>0$	The graph opens upward
$a<0$	The graph opens downward
c	y-intercept
$h=-\frac{b}{2 a}$	x-coordinate of the vertex
$k=a h^{2}+b h+c$	y-coordinate of the vertex
	Extreme value of y
$x=h$	Equation of the axis of symmetry

$\checkmark \quad$ Other forms:

1. $y=a(x-h)^{2}+k$: Vertex form
2. $y=a(x-p)(x-q)$: Factored form with x-intercepts p and q
$\checkmark \quad$ Solving the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$:
3. Factorization by cross method
4. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$: Quadratic Formula
5. Method of completing the square
$\checkmark \quad$ The discriminant $\Delta=b^{2}-4 a c$ of $a x^{2}+b x+c=0$:

$\Delta>0$	The quadratic equation has two distinct real roots
$\Delta=0$	The quadratic equation has one double real root
$\Delta<0$	The quadratic equation has no real root

$\checkmark \quad$ The x-intercepts of the quadratic function $y=a x^{2}+b x+c$ are the roots of the corresponding quadratic equation $a x^{2}+b x+c=0$

3 Functions

$\checkmark \quad$ The function $y=f(x)$:

1. $f(a)$: Functional value when $x=a$
2. Set of values of x : Domain
3. Set of values of y : Range
$\checkmark \quad f \circ g(x)=f(g(x))$: Composite function when $g(x)$ is substituted into $f(x)$
$\checkmark \quad$ Steps of finding the inverse function $y=f^{-1}(x)$ of $f(x)$:
4. Start from expressing y in terms of x
5. Interchange x and y
6. Make y the subject in terms of x
$\checkmark \quad$ Properties of $y=f^{-1}(x)$:
7. $\quad f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$
8. The graph of $y=f^{-1}(x)$ is the reflection of the graph of $y=f(x)$ about $y=x$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ Summary of transformations:

	$f(x) \rightarrow f(x)+k:$ Translate upward by k units
$f(x) \rightarrow f(x)-k:$	
Translate downward by	
k units	

$\checkmark \quad$ Properties of rational function $y=\frac{a x+b}{c x+d}$:

1. $y=\frac{1}{x}$: Reciprocal function
2. $y=\frac{a}{c}$: Horizontal asymptote
3. $x=-\frac{d}{c}$: Vertical asymptote
$\checkmark \quad$ Odd and even functions:
$f(x)$ is odd if $f(-x)=-f(x)$
$f(x)$ is even if $f(-x)=f(x)$
$\checkmark \quad f^{-1}(x)$ exists only when $f(x)$ is one-to-one in the restricted domain
$\checkmark \quad$ Absolute function:
$|f(x)|=\left\{\begin{array}{c}f(x) \text { if } x \geq 0 \\ -f(x) \text { if } x<0\end{array}\right.$

4 Exponential and Logarithmic Functions

$\checkmark \quad y=a^{x}$: Exponential function of base $a \neq 1$
$\checkmark \quad$ Methods of solving an exponential equation $a^{x}=b$:

1. \quad Change b into a^{y} such that $a^{x}=a^{y} \Rightarrow x=y$
2. Take logarithm for both sides
$\checkmark \quad y=\log _{a} x$: Logarithmic function of base $a>0$
$\checkmark \quad y=\log x=\log _{10} x$: Common Logarithmic function
$\checkmark \quad y=\ln x=\log _{e} x$: Natural Logarithmic function, where $e=2.71828 \ldots$ is an exponential number
$\checkmark \quad$ Laws of logarithm, where $a, b, c, p, q, x>0$:
3. $x=a^{y} \Leftrightarrow y=\log _{a} x$
4. $\log _{a} 1=0$
5. $\log _{a} a=1$
6. $\log _{a} p+\log _{a} q=\log _{a} p q$
7. $\log _{a} p-\log _{a} q=\log _{a} \frac{p}{q}$
8. $\quad \log _{a} p^{n}=n \log _{a} p$
9. $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ Properties of the graphs of $y=a^{x}$:

$a>1$	$0<a<1$
y-intercept $=1$	
y increases as x increases	y decreases as x increases
y tends to zero as x tends to negative infinity	y tends to zero as x tends to positive infinity
Horizontal asymptote: $y=0$	

$\checkmark \quad$ Properties of the graphs of $y=\log _{a} x$:

$a>1$	x-intercept $=1$
$0<a<1$	
y increases as x increases	y decreases as x increases
x tends to zero as y tends to negative infinity	x tends to zero as y tends to positive infinity
Vertical asymptote: $x=0$	

5 5

$\checkmark \quad$ Number of roots of the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$:
The maximum number of roots of $f(x)=0$ is n
$\checkmark \quad$ Sum and product of roots of $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$:

1. $r_{1}, r_{2}, \ldots, r_{n}$: Roots
2. $r_{1}+r_{2}+\cdots+r_{n}=-\frac{a_{n-1}}{a_{n}}$
3. $r_{1} r_{2} r_{3} \cdots r_{n-1} r_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}$
$\checkmark \quad$ Factor theorem:
$(x-a)$ is a factor of $f(x)$ if $f(a)=0$
$(p x-q)$ is a factor of $f(x)$ if $f\left(\frac{q}{p}\right)=0$
$\checkmark \quad$ Remainder theorem:
$f(a)$ is the remainder when $f(x)$ is divided by $(x-a)$
$f\left(\frac{q}{p}\right)$ is the remainder when $f(x)$ is divided by $(p x-q)$
$\checkmark \quad$ Partial fractions:
4. $\frac{a x+b}{(c x+d)(e x+f)}$ can be expressed as $\frac{P}{c x+d}+\frac{Q}{e x+f}$
5. $\frac{a x+b}{(c x+d)^{2}}$ can be expressed as $\frac{P}{c x+d}+\frac{Q}{(c x+d)^{2}}$

6 Systems of Equations

$\checkmark \quad\left\{\begin{array}{l}a x+b y=c \\ d x+e y=f\end{array}: 2 \times 2\right.$ system
$\checkmark \quad\left\{\begin{array}{l}a x+b y+c z=d \\ e x+f y+g z=h: 3 \times 3 \text { system } \\ i x+j y+k z=l\end{array}\right.$
$\checkmark \quad$ The above systems can be solved by PlySmlt2 in TI-84 Plus CE
$\checkmark \quad$ Row operations of a system with row R_{i} :

1. Multiply the constant k to the row $R_{i}\left(k R_{i}\right)$
2. Add the row R_{i} to the row $R_{j}\left(R_{i}+R_{j}\right)$
3. Add the multiple of the row R_{i} to the row $R_{j}\left(k R_{i}+R_{j}\right)$
$\checkmark \quad$ Number of solutions of a system with the last row $a z=b$ after row operation:
4. The system has a unique solution if $a \neq 0$
5. The system has no solution if $a=0$ and $b \neq 0$
6. The system has infinitely number of solutions if $a=0$ and $b=0$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

7
 Arithmetic Sequences

$\checkmark \quad$ Properties of an arithmetic sequence u_{n} :

1. u_{1} : First term
2. $d=u_{2}-u_{1}=u_{n}-u_{n-1}$: Common difference
3. $u_{n}=u_{1}+(n-1) d$: General term (nth term)
4. $\quad S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]=\frac{n}{2}\left[u_{1}+u_{n}\right]$: The sum of the first n terms
$\checkmark \quad \sum_{r=1}^{n} u_{r}=u_{1}+u_{2}+u_{3}+\cdots+u_{n-1}+u_{n}$: Summation sign

8 Geometric Sequences

$\checkmark \quad$ Properties of a geometric sequence u_{n} :

1. u_{1} : First term
2. $r=u_{2} \div u_{1}=u_{n} \div u_{n-1}$: Common ratio
3. $u_{n}=u_{1} \times r^{n-1}$: General term (nth term)
4. $\quad S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$: The sum of the first n terms
5. $S_{\infty}=\frac{u_{1}}{1-r}$: The sum to infinity, given that $-1<r<1$

9 Binomial Theorem

$\checkmark \quad$ Properties of the n factorial n !:

1. $n!=n \times(n-1) \times(n-2) \times \cdots \times 3 \times 2 \times 1$
2. $0!=1$
3. $n!=n \times(n-1)$!
$\checkmark \quad$ Properties of the combination coefficient $\binom{n}{r}$:
4. $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
5. $\binom{n}{0}=\binom{n}{n}=1$
6. $\binom{n}{1}=\binom{n}{n-1}=n$
7. $\binom{n}{r}=\binom{n}{n-r}=\frac{n(n-1) \cdots(n-r+1)}{r!}$
$\checkmark \quad$ The binomial theorem:
$(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n}$
$=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$, where the $(r+1)$-th term $=\binom{n}{r} a^{n-r} b^{r}$
$\checkmark \quad$ Extended binomial theorem for $|x|<1$:
$(1+x)^{n}=1+n x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\cdots$
$(1+x)^{n}=1+n x+\frac{(n)(n-1)}{(2)(1)} x^{2}+\frac{(n)(n-1)(n-2)}{(3)(2)(1)} x^{3}+\cdots$

10 manamatalanouction

$\checkmark \quad$ Steps of proving by mathematical induction:

1. Prove that the statement $P(n)$ is true when $n=1$
2. Assume that $P(n)$ is true when $n=k$
3. Prove that the statement $P(n)$ is true when $n=k+1$
4. Conclude that $P(n)$ is true for all positive integer n
$\checkmark \quad$ Types of mathematical induction:
5. General case
6. Divisibility

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

11 Proofs and Identities

$\checkmark \quad$ Identity of x : The equivalence of two expressions for all values of x
\equiv : Identity sign
$\checkmark \quad$ Types of proofs:

1. Prove by contradiction
2. Prove by counter example

12 Coordinate Geometry

$\checkmark \quad$ Consider the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ on a $x-y$ plane:

1. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$: Slope of $P Q$
2. $\quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$: Distance between P and Q
3. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$: The mid-point of $P Q$
$\checkmark \quad$ Forms of straight lines with slope m and y-intercept c :
4. $y=m x+c$: Slope-intercept form
5. $A x+B y+C=0$: General form
$\checkmark \quad$ Ways to find the x-intercept and the y-intercept of a line:
6. Substitute $y=0$ and make x the subject to find the x-intercept
7. Substitute $x=0$ and make y the subject to find the y-intercept

13 Trigonometry

$\checkmark \quad$ Trigonometric identities:

1. $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$
2. $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$
$\checkmark \quad$ Double angle formula:
3. $\sin 2 \theta=2 \sin \theta \cos \theta$
4. $\cos 2 \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta=\cos ^{2} \theta-\sin ^{2} \theta$

$\checkmark \quad$ ASTC diagram

- ${ }^{\text {y }}$	
$S\left(90^{\circ}<\theta<180^{\circ}\right)$	$A\left(0^{\circ}<\theta<90^{\circ}\right)$
$\sin \theta>0$	$\sin \theta>0$
$\cos \theta<0$	$\cos \theta>0$
$\tan \theta<0$	$\tan \theta>0$
$T\left(180^{\circ}<\theta<270^{\circ}\right)$	$C\left(270^{\circ}<\theta<360^{\circ}\right)$
$\sin \theta<0$	$\sin \theta<0$
$\cos \theta<0$	$\cos \theta>0$
$\tan \theta>0$	$\tan \theta<0$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ Properties of graphs of trigonometric functions:

	1.	Amplitude $=1$
	2.	Period $=360^{\circ}$
	3.	$-1 \leq \sin x \leq 1$
	1.	Amplitude $=1$
	2.	Period $=360^{\circ}$
	3.	$-1 \leq \cos x \leq 1$
	1.	Period $=180^{\circ}$
	2.	$\tan x \in \mathbb{R}$
	3.	Vertical asymptotes: $x=90^{\circ}, x=270^{\circ}$

$\checkmark \quad$ Properties of a general trigonometric function $y=A \sin B(x-C)+D$:

1. $A=\frac{y_{\text {max }}-y_{\text {min }}}{2}$: Amplitude
2. $B=\frac{2 \pi}{\text { Period }}$
3. $D=\frac{y_{\text {max }}+y_{\text {min }}}{2}$
4. $\quad C$ can be found by substitution of a point on the graph
$\checkmark \quad$ Reciprocal trigonometric ratios:
5. $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
6. $\sec \theta=\frac{1}{\cos \theta}$
7. $\cot \theta=\frac{1}{\tan \theta}$
$\checkmark \quad$ Inverse trigonometric functions:
8. $f(x)=\sin x \Rightarrow f^{-1}(x)=\sin ^{-1} x=\arcsin x$
9. $g(x)=\cos x \Rightarrow g^{-1}(x)=\cos ^{-1} x=\arccos x$
10. $h(x)=\tan x \Rightarrow h^{-1}(x)=\tan ^{-1} x=\arctan x$
$\checkmark \quad$ More trigonometric identities:
11. $\sec ^{2} \theta=1+\tan ^{2} \theta$
12. $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$
$\checkmark \quad \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$: Double angle formula for tangent ratio

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ Properties of graphs of reciprocal trigonometric functions:

$y=\operatorname{cosec} x$	1.	Period $=2 \pi$
	2.	$\operatorname{cosec} x \geq 1$ or $\operatorname{cosec} x \leq-1$
	3.	Vertical asymptotes: $x=n \pi, n \in \mathbb{Z}$
$y=\sec x$	1.	Period $=2 \pi$
	2.	$\sec x \geq 1$ or $\sec x \leq-1$
	3.	Vertical asymptotes: $x=n \pi+\frac{\pi}{2}, n \in \mathbb{Z}$
$y=\cot x$	1.	Period $=\pi$
	2.	$\cot x \in \mathbb{R}$
	3.	Vertical asymptotes: $x=n \pi, n \in \mathbb{Z}$

$\checkmark \quad$ Properties of graphs of inverse trigonometric functions:

$\checkmark \quad$ Symmetric properties of trigonometric functions:

1. $\sin (-x)=-\sin x \Rightarrow \operatorname{cosec}(-x)=-\operatorname{cosec} x$
2. $\cos (-x)=\cos x \Rightarrow \sec (-x)=\sec x$
3. $\tan (-x)=-\tan x \Rightarrow \cot (-x)=-\cot x$
$\checkmark \quad$ Compound angle formula:
4. $\sin (A+B)=\sin A \cos B+\cos A \sin B$
5. $\sin (A-B)=\sin A \cos B-\cos A \sin B$
6. $\cos (A+B)=\cos A \cos B-\sin A \sin B$
7. $\cos (A-B)=\cos A \cos B+\sin A \sin B$
8. $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
9. $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

14 2-D Trigonometry

$\checkmark \quad$ Consider a triangle $A B C$:

1. $\frac{\sin A}{a}=\frac{\sin B}{b}$ or $\frac{a}{\sin A}=\frac{b}{\sin B}$: Sine rule Note: The ambiguous case exists if two sides and an angle are known, and the angle is opposite
 to the shorter known side
2. $a^{2}=b^{2}+c^{2}-2 b c \cos A$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$: Cosine rule
3. $\frac{1}{2} a b \sin C$: Area of the triangle $A B C$
$\checkmark \quad \frac{x^{\circ}}{180^{\circ}}=\frac{y \mathrm{rad}}{\pi \mathrm{rad}}$: Method of conversions between degree and radian
$\checkmark \quad$ Consider a sector $O P R Q$ with centre O, radius r and $\angle P O Q=\theta$ in radian:
4. $r \theta$: Arc length $P Q$
5. $\frac{1}{2} r^{2} \theta$: Area of the sector $O P R Q$
6. $\frac{1}{2} r^{2}(\theta-\sin \theta):$ Area of the segment $P R Q$

15
 Areas and Volumes

$\checkmark \quad$ For a cube of side length l :

1. $6 l^{2}$: Total surface area
2. $\quad l^{3}$: Volume
$\checkmark \quad$ For a cuboid of side lengths a, b and c :
3. $2(a b+b c+a c)$: Total surface area
4. $a b c$: Volume
$\checkmark \quad$ For a prism of height h and cross-sectional area A :
5. $A h$: Volume
$\checkmark \quad$ For a cylinder of height h and radius r :
6. $2 \pi r^{2}+2 \pi r h$: Total surface area
7. $2 \pi r h$: Lateral surface area
8. $\pi r^{2} h$: Volume
$\checkmark \quad$ For a pyramid of height h and base area A :
9. $\frac{1}{3} A h$: Volume
$\checkmark \quad$ For a circular cone of height h and radius r :
10. $l=\sqrt{r^{2}+h^{2}}$: Slant height
11. $\pi r^{2}+\pi r l$: Total surface area
12. $\pi r l$: Curved surface area
13. $\frac{1}{3} \pi r^{2} h$: Volume
$\checkmark \quad$ For a sphere of radius r :
14. $4 \pi r^{2}$: Total surface area
15. $\frac{4}{3} \pi r^{3}$: Volume
$\checkmark \quad$ For a hemisphere of radius r :
16. $3 \pi r^{2}$: Total surface area
17. $2 \pi r^{2}$: Curved surface area
18. $\frac{2}{3} \pi r^{3}$: Volume

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

16 vocese

$\checkmark \quad$ Terminologies of vectors:
$\overrightarrow{A B}$: Vector of length $A B$ with initial point A and terminal point B
$\overrightarrow{\mathrm{OP}}$: Position vector of P , where O is the origin
$|\overrightarrow{\mathrm{AB}}|$: Magnitude (length) of $\overrightarrow{\mathrm{AB}}$
$\hat{\mathbf{v}}=\frac{1}{|\mathbf{v}|} \mathbf{v}$: Unit vector parallel to \mathbf{v}, with $|\hat{\mathbf{v}}|=1$
0 : Zero vector
i: Unit vector along the positive x-axis
\mathbf{j} : Unit vector along the positive y-axis
\mathbf{k} : Unit vector along the positive z-axis
$\checkmark \quad$ A vector \mathbf{v} can be expressed as $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ or $\mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$
$\checkmark \quad$ Properties of vectors:

1. $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$
2. $\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right) \pm\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=\left(\begin{array}{l}u_{1} \pm v_{1} \\ u_{2} \pm v_{2} \\ u_{3} \pm v_{3}\end{array}\right)$
3. \mathbf{v} and $k \mathbf{v}$ are in the same direction if $k>0$
4. $\quad \mathbf{v}$ and $k \mathbf{v}$ are in opposite direction if $k<0$
5. $k\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=\left(\begin{array}{l}k v_{1} \\ k v_{2} \\ k v_{3}\end{array}\right)$
$\checkmark \quad$ Properties of the scalar product $\mathbf{u} \cdot \mathbf{v}$ of $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ where θ is the angle between \mathbf{u} and \mathbf{v} :
6. $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}=|\mathbf{u}||\mathbf{v}| \cos \theta$
7. $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1$
8. $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=0$
9. $\quad \mathbf{u}$ and \mathbf{v} are in the same direction if $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}|$
10. \mathbf{u} and \mathbf{v} are in opposite direction if $\mathbf{u} \cdot \mathbf{v}=-|\mathbf{u}||\mathbf{v}|$
11. \mathbf{u} and \mathbf{v} are perpendicular if $\mathbf{u} \cdot \mathbf{v}=0$
12. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
13. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
$\checkmark \quad$ Properties of the vector product $\mathbf{u} \times \mathbf{v}$ of $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ where θ is the angle between \mathbf{u} and \mathbf{v} :
14. $\mathbf{u} \times \mathbf{v}=\left(\begin{array}{l}u_{2} v_{3}-u_{3} v_{2} \\ u_{3} v_{1}-u_{1} v_{3} \\ u_{1} v_{2}-u_{2} v_{1}\end{array}\right)=|\mathbf{u}||\mathbf{v}| \sin \theta \hat{\mathbf{n}}$, where $\hat{\mathbf{n}} / /(\mathbf{u} \times \mathbf{v})$
15. $\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0}$
16. $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}$ and $\mathbf{k} \times \mathbf{i}=\mathbf{j}$
17. $\mathbf{j} \times \mathbf{i}=-\mathbf{k}, \mathbf{k} \times \mathbf{j}=-\mathbf{i}$ and $\mathbf{i} \times \mathbf{k}=-\mathbf{j}$
18. \mathbf{u} and \mathbf{v} are parallel if $\mathbf{u} \times \mathbf{v}=0$
19. $\quad \mathbf{u}$ and \mathbf{v} are perpendicular if $|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}|$
20. $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
$\checkmark \quad$ The area of the parallelogram with adjacent sides $\overrightarrow{A B}$ and $\overrightarrow{A D}$ is $|\overrightarrow{A B} \times \overrightarrow{A D}|$
$\checkmark \quad$ The area of the triangle with adjacent sides $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AD}}$ is $\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}|$
$\checkmark \quad$ The volume of the parallelepiped formed by $\overrightarrow{A B}, \overrightarrow{A D}$ and $\overrightarrow{A F}$ is $|(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}) \cdot \overrightarrow{\mathrm{AF}}|$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ Forms of the straight line with fixed point $\mathrm{A}\left(a_{1}, a_{2}, a_{3}\right)$ and direction vector $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$:

1. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)+t\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right), t \in \mathbb{R}$
2. $\left\{\begin{array}{l}x=a_{1}+b_{1} t \\ y=a_{2}+b_{2} t: \text { Parametric form } \\ z=a_{3}+b_{3} t\end{array}\right.$
3. $\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}(=t)$: Cartesian equations
$\checkmark \quad$ Intersections of two lines:
4. Intersect at one point (One intersection)
5. Skew (No intersection)
6. Parallel (No intersection)
7. Coincide (Infinite number of intersections)
$\checkmark \quad$ Forms of the plane with fixed point $\mathrm{A}\left(a_{1}, a_{2}, a_{3}\right)$ and normal vector $\mathbf{n}=\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right)$:
8. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right)=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \cdot\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right)$
9. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)+\lambda \mathbf{u}+\mu \mathbf{v}, \lambda, \mu \in \mathbb{R}$, where \mathbf{u} and \mathbf{v} are two non-parallel vectors on the plane
10. $n_{1} x+n_{2} y+n_{3} z=a_{1} n_{1}+a_{2} n_{2}+a_{3} n_{3}$: Cartesian form
$\checkmark \quad$ Intersections of two planes:
11. Intersect at one line
12. Parallel (No intersection)
13. Coincide (Infinite number of intersections)

Complex Numbers

$\checkmark \quad$ Terminologies of complex numbers:
$\mathrm{i}=\sqrt{-1}$: Imaginary unit
$z=a+b \mathrm{i}$: Complex number in Cartesian form
a : Real part of z
b : Imaginary part of z
$z^{*}=a-b \mathrm{i}$: Conjugate of $z=a+b \mathrm{i}$
$|z|=r=\sqrt{a^{2}+b^{2}}$: Modulus of $z=a+b \mathrm{i}$
$\arg (z)=\theta=\arctan \frac{b}{a}$: Argument of $z=a+b \mathrm{i}$
$\checkmark \quad$ Properties of Argand diagram:

1. Real axis: Horizontal axis
2. Imaginary axis: Vertical axis

$\checkmark \quad$ Forms of complex numbers:
3. $z=a+b \mathrm{i}:$ Cartesian form
4. $z=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$: Modulus-argument form
5. $z=r e^{i \theta}$: Euler form
$\checkmark \quad$ Properties of moduli and arguments of complex numbers z_{1} and z_{2} :
6. $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
7. $\quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
8. $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$
9. $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}$
$\checkmark \quad$ If $z=a+b \mathrm{i}$ is a root of the polynomial equation $p(z)=0$, then $z^{*}=a-b \mathrm{i}$ is also a root of $p(z)=0$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ The roots of the equation $z^{n}=r \operatorname{cis} \theta$ are $z=r^{\frac{1}{n}} \operatorname{cis} \frac{\theta+2 k \pi}{n}, k=0,1,2, \cdots, n-1$
\checkmark De Moivre's theorem:
If $z=r \operatorname{cis} \theta$, then $z^{n}=r^{n} \operatorname{cis} n \theta$

18
 Differentiation

$\checkmark \quad$ Derivatives of a function $y=f(x)$:

1. $\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x)$: First derivative
2. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=f^{\prime \prime}(x)$: Second derivative
3. $\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=f^{(n)}(x): n$-th derivative
$\checkmark \quad$ Rules of differentiation:

$f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}$	$f(x)=p(x)+q(x) \Rightarrow f^{\prime}(x)=p^{\prime}(x)+q^{\prime}(x)$
$f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x$	$f(x)=c p(x) \Rightarrow f^{\prime}(x)=c p^{\prime}(x)$
$f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x$	$f(x)=p(q(x)) \Rightarrow f^{\prime}(x)=p^{\prime}(q(x)) \cdot q^{\prime}(x)$
$f(x)=\tan x \Rightarrow f^{\prime}(x)=\frac{1}{\cos ^{2} x}$	$f(x)=p(x) q(x)$ $y$$f^{\prime}(x)=p^{\prime}(x) q(x)+p(x) q^{\prime}(x)$

$\checkmark \quad$ Relationships between graph properties and the derivatives:

1. $f^{\prime}(x)>0$ for $a \leq x \leq b: f(x)$ is increasing in the interval
2. $f^{\prime}(x)<0$ for $a \leq x \leq b: f(x)$ is decreasing in the interval
3. $\quad f^{\prime}(a)=0:(a, f(a))$ is a stationary point of $f(x)$
4. $\quad f^{\prime}(a)=0$ and $f^{\prime}(x)$ changes from positive to negative at $x=a:(a, f(a))$ is a maximum point of $f(x)$
5. $\quad f^{\prime}(a)=0$ and $f^{\prime}(x)$ changes from negative to positive at $x=a:(a, f(a))$ is a minimum point of $f(x)$
6. $\quad f^{\prime \prime}(a)=0$ and $f^{\prime \prime}(x)$ changes sign at $x=a:(a, f(a))$ is a point of inflexion of $f(x)$
$\checkmark \quad$ Slopes of tangents and normals:
7. $f^{\prime}(a)$: Slope of tangent at $x=a$
8. $\frac{-1}{f^{\prime}(a)}$: Slope of normal at $x=a$
$\checkmark \quad$ Differentiation by first principle:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$\checkmark \quad$ More differentiation rules:

$f(x)=\tan x \Rightarrow f^{\prime}(x)=\sec ^{2} x$	$f(x)=\cot x \Rightarrow f^{\prime}(x)=-\operatorname{cosec}^{2} x$
$f(x)=\sec x \Rightarrow f^{\prime}(x)=\sec x \tan x$	$f(x)=\operatorname{cosec} x \Rightarrow f^{\prime}(x)=-\operatorname{cosec} x \cot x$
$f(x)=a^{x} \Rightarrow f^{\prime}(x)=a^{x} \ln a$	$f(x)=\log _{a} x \Rightarrow f^{\prime}(x)=\frac{1}{x \ln a}$
$f(x)=\arcsin x \Rightarrow f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$	$f(x)=\arccos x \Rightarrow f^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}}$
$f(x)=\arctan x \Rightarrow f^{\prime}(x)=\frac{1}{1+x^{2}}$	

$\checkmark \quad$ Implicit differentiation:

$$
F(x, y)=G(x, y) \Rightarrow \frac{\mathrm{d}}{\mathrm{~d} x} F(x, y)=\frac{\mathrm{d}}{\mathrm{~d} x} G(x, y)
$$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

19 Applications of Differentiation

$\checkmark \quad$ Equations of tangents and normals:

1. $y-f(a)=f^{\prime}(a)(x-a)$: Equation of tangent at $x=a$
2. $y-f(a)=\left(\frac{-1}{f^{\prime}(a)}\right)(x-a)$: Equation of normal at $x=a$
$\checkmark \quad \frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{\mathrm{d} N}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}:$ Rate of change of N with respect to the time t
$\checkmark \quad$ Tests for optimization:
3. First derivative test
4. Second derivative test
$\checkmark \quad$ Applications in kinematics:
5. $s(t)$: Displacement with respect to the time t
6. $v(t)=s^{\prime}(t)$: Velocity
7. $a(t)=v^{\prime}(t)$: Acceleration
$\checkmark \quad$ Properties of rate of change:
8. $\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{\mathrm{d} N}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}$
9. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$

20 masaten

$\checkmark \quad$ Integrals of a function $y=f(x)$:

1. $\int f(x) \mathrm{d} x$: Indefinite integral of $f(x)$
2. $\quad \int_{a}^{b} f(x) \mathrm{d} x$: Definite integral of $f(x)$ from a to b
$\checkmark \quad$ Rules of integration:

$\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}+C$	$\int\left(p^{\prime}(x)+q^{\prime}(x)\right) \mathrm{d} x=p(x)+q(x)+C$
$\int \cos x \mathrm{~d} x=\sin x+C$	$\int c p^{\prime}(x) \mathrm{d} x=c p(x)+C$
$\int \sin x \mathrm{~d} x=-\cos x+C$	$\int_{a}^{b} f^{\prime}(x) \mathrm{d} x=[f(x)]_{a}^{b}=f(b)-f(a)$
$\int \frac{1}{\cos ^{2} x} \mathrm{~d} x=\tan x+C$	Integration by substitution
$\int e^{x} \mathrm{~d} x=e^{x}+C$	$\int \frac{1}{x} \mathrm{~d} x=\ln x+C$

$\checkmark \quad$ More integration rules:

$\int \sec ^{2} x \mathrm{~d} x=\tan x+C$	$\int \operatorname{cosec}^{2} x \mathrm{~d} x=-\cot x+C$
$\int \sec x \tan x \mathrm{~d} x=\sec x+C$	$\int \operatorname{cosec} x \cot x \mathrm{~d} x=-\operatorname{cosec} x+C$
$\int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a}+C$	$\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\arcsin x+C$
$\int \frac{1}{1+x^{2}} \mathrm{~d} x=\arctan x+C$	

$\checkmark \quad$ Integration by parts:

1. $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$
2. $\int_{a}^{b} u \mathrm{~d} v=[u v]_{a}^{b}-\int_{a}^{b} v \mathrm{~d} u$

21 Applications of Integration

$\checkmark \quad$ Areas on $x-y$ plane, between $x=a$ and $x=b$:

1. $\int_{a}^{b} f(x) \mathrm{d} x$: Area under the graph of $f(x)$ and above the x-axis
2. $\quad-\int_{a}^{b} f(x) \mathrm{d} x$: Area under the x-axis and above the graph of $f(x)$
3. $\quad \int_{a}^{b}(f(x)-g(x)) \mathrm{d} x$: Area under the graph of $f(x)$ and above the graph of $g(x)$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ Applications in kinematics:

1. $\quad a(t)$: Acceleration with respect to the time t
2. $v(t)=\int a(t) \mathrm{d} t$: Velocity
3. $s(t)=\int v(t) \mathrm{d} t$: Displacement
4. $\quad d=\int_{t_{1}}^{t_{2}}|v(t)| \mathrm{d} t$: Total distance travelled between t_{1} and t_{2}
$\checkmark \quad$ Areas on $x-y$ plane, between $y=c$ and $y=d$:
5. $\int_{c}^{d} g(y) \mathrm{d} y$: Area on the left of the graph of $g(y)$ and on the right of the y-axis
6. $-\int_{c}^{d} g(y) \mathrm{d} y$: Area on the left of the y-axis and on the right of the graph of $g(y)$
7. $\quad \int_{c}^{d}(g(y)-f(y)) \mathrm{d} y$: Area on the left of the graph of $g(y)$ and on the right of the graph of $f(y)$
$\checkmark \quad$ Volumes of revolutions about the x-axis, between $x=a$ and $x=b$:
8. $\quad V=\pi \int_{a}^{b}(f(x))^{2} \mathrm{~d} x$: Volume of revolution when the region between the graph of $f(x)$ and the x-axis is rotated 360° about the x-axis
9. $\quad V=\pi \int_{a}^{b}\left((f(x))^{2}-(g(x))^{2}\right) \mathrm{d} x$: Volume of revolution when the region between the graphs of $f(x)$ and $g(x)$ is rotated 360° about the x-axis
$\checkmark \quad$ Volumes of revolutions about the y-axis, between $y=c$ and $y=d$:
10. $\quad V=\pi \int_{c}^{d}(g(y))^{2} \mathrm{~d} y$: Volume of revolution when the region between the graph of $g(y)$ and the y-axis is rotated 360° about the y-axis
11. $\quad V=\pi \int_{c}^{d}\left((g(y))^{2}-(f(y))^{2}\right) \mathrm{d} y$: Volume of revolution when the region between the graphs of $g(y)$ and $f(y)$ is rotated 360° about the y-axis

22 Limits and Maclaurin Series

$\checkmark \quad$ L'Hôpital's Rule under the conditions of indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
$\checkmark \quad f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{(3)}(0)+\cdots$: Maclaurin series
$\checkmark \quad$ Common Maclaurin series:

1. $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
2. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
3. $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
4. $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$ for $-1<x \leq 1$
5. $\quad \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$ for $-1<x<1$
6. $(1+x)^{n}=1+n x+\frac{(n)(n-1)}{(2)(1)} x^{2}+\frac{(n)(n-1)(n-2)}{(3)(2)(1)} x^{3}+\cdots$ for $-1<x<1$

23 Differential Equations

$\checkmark \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y):$ First order differential equation
$\checkmark \quad$ Solving $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g(y)$ by separating variables:
$\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g(y) \Rightarrow \int \frac{1}{g(y)} \mathrm{d} y=\int f(x) \mathrm{d} x$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

$\checkmark \quad$ Solving $\frac{\mathrm{d} y}{\mathrm{~d} x}+f(x) \cdot y=g(x, y)$ by integrating factor:
$e^{\int f(x) \mathrm{d} x}$: Integrating factor
$\frac{\mathrm{d} y}{\mathrm{~d} x}+f(x) \cdot y=g(x, y) \Rightarrow e^{\int f(x) \mathrm{d} x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+e^{\int f(x) \mathrm{d} x} \cdot f(x) \cdot y=e^{\int f(x) \mathrm{d} x} \cdot g(x, y)$
$\checkmark \quad$ Solving $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$ by Euler's method, with $\left(x_{0}, y_{0}\right)$ and step length h :
$\left\{\begin{array}{l}x_{n+1}=x_{n}+h \\ y_{n+1}=y_{n}+\left.h \frac{\mathrm{~d} y}{\mathrm{~d} x}\right|_{\left(x_{n}, y_{n}\right)}\end{array}\right.$
$\checkmark \quad$ Developing a Maclaurin series from $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y) \Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{~d} x} f(x, y) \Rightarrow \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} f(x, y)\right)
$$

24 Statistics

$\checkmark \quad$ Relationship between frequencies and cumulative frequencies:

Data	Frequency	Data less than or equal to	Cumulative frequency
10	f_{1}	10	f_{1}
20	f_{2}	20	$f_{1}+f_{2}$
30	f_{3}	30	$f_{1}+f_{2}+f_{3}$

$\checkmark \quad$ Measures of central tendency for a data set $\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right\}$ arranged in ascending order:

1. $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}$: Mean
2. The datum or the average value of two data at the middle: Median
3. The datum appears the most: Mode
$\checkmark \quad$ Measures of dispersion for a data set $\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right\}$ arranged in ascending order:
4. $x_{n}-x_{1}$: Range
5. Two subgroups A and B can be formed from the data set such that all data of the subgroup A are less than or equal to the median, while all data of the subgroup B are greater than or equal to the median
6. $Q_{1}=$ The median of the subgroup A: Lower quartile
7. $\quad Q_{3}=$ The median of the subgroup B: Upper quartile
8. $Q_{3}-Q_{1}$: Inter-quartile range (IQR)
9. $\sigma=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\left(x_{3}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}}:$ Standard deviation
$\checkmark \quad$ Box-and-whisker diagram:

$\checkmark \quad$ A datum x is defined to be an outlier if $x<Q_{1}-1.5 \mathrm{IQR}$ or $x>Q_{3}+1.5 \mathrm{IQR}$
$\checkmark \quad$ Coding of data:
10. Only the mean, the median, the mode and the quartiles will change when each datum of the data set is added or subtracted by a value
11. All measures of central tendency and measures of dispersion will change when each datum of the data set is multiplied or divided by a value

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

25
 Permutations and Combinations

$\checkmark \quad$ Permutations and combinations when a sample of r objects are selected from a set of n objects, $0 \leq r \leq n$:

1. ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$: Number of permutations when the order is taken into account
2. ${ }^{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$: Number of combinations when the order is not taken into account
$\checkmark \quad$ Terminologies:
3. U : Universal set
4. A : Event
5. x : Outcome of an event
6. $n(U)$: Total number of elements
7. $n(A)$: Number of elements in A
$\checkmark \quad$ Formulae for probability:
8. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
9. $\quad \mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)$
10. $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
11. $\mathrm{P}(A)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\prime}\right)$
12. $\quad \mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)+\mathrm{P}(A \cup B)=1$
13. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$ and $\mathrm{P}(A \cap B)=0$ if A and B are mutually exclusive
14. $\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$ and $\mathrm{P}(A \mid B)=\mathrm{P}(A)$ if A and B are independent
$\checkmark \quad$ Venn diagram:
15. Region I: $A \cap B$
16. Region II: $A \cap B^{\prime}$
17. Region III: $A^{\prime} \cap B$
18. Region IV: $(A \cup B)^{\prime}$

\checkmark Tree diagram:
19. Path I: $\mathrm{P}(A \cap B)=p q$
20. Path I + Path III:

$$
\begin{aligned}
& =\mathrm{P}(B) \\
& =\mathrm{P}(A \cap B)+\mathrm{P}\left(A^{\prime} \cap B\right) \\
& =p q+(1-p) r
\end{aligned}
$$

$\checkmark \quad$ Bayes' theorem:

1. $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A) \mathrm{P}(B \mid A)}{\mathrm{P}(A) \mathrm{P}(B \mid A)+\mathrm{P}\left(A^{\prime}\right) \mathrm{P}\left(B \mid A^{\prime}\right)}$ for two events
2. $\mathrm{P}\left(A_{i} \mid B\right)=\frac{\mathrm{P}\left(A_{i}\right) \mathrm{P}\left(B \mid A_{i}\right)}{\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(B \mid A_{1}\right)+\mathrm{P}\left(A_{2}\right) \mathrm{P}\left(B \mid A_{2}\right)+\mathrm{P}\left(A_{3}\right) \mathrm{P}\left(B \mid A_{3}\right)}(i=1,2,3$) for three events

27 Discrete Probability Distributions

$\checkmark \quad$ Properties of a discrete random variable X :

X	x_{1}	x_{2}	\ldots	x_{n}
$\mathrm{P}(X=x)$	$\mathrm{P}\left(X=x_{1}\right)$	$\mathrm{P}\left(X=x_{2}\right)$	\ldots	$\mathrm{P}\left(X=x_{n}\right)$

1. $\mathrm{P}\left(X=x_{1}\right)+\mathrm{P}\left(X=x_{2}\right)+\cdots+\mathrm{P}\left(X=x_{n}\right)=1$
2. $\mathrm{E}(X)=x_{1} \mathrm{P}\left(X=x_{1}\right)+x_{2} \mathrm{P}\left(X=x_{2}\right)+\cdots+x_{n} \mathrm{P}\left(X=x_{n}\right)$: Expected value of X
3. $\mathrm{E}(X)=0$ if a fair game is considered
$\checkmark \quad$ Properties of a discrete random variable X :

X	x_{1}	x_{2}	\ldots	x_{n}
$\mathrm{P}(X=x)$	$\mathrm{P}\left(X=x_{1}\right)$	$\mathrm{P}\left(X=x_{2}\right)$	\ldots	$\mathrm{P}\left(X=x_{n}\right)$

1. $\mathrm{E}\left(X^{2}\right)=x_{1}{ }^{2} \mathrm{P}\left(X=x_{1}\right)+x_{2}{ }^{2} \mathrm{P}\left(X=x_{2}\right)+\cdots+x_{n}{ }^{2} \mathrm{P}\left(X=x_{n}\right)$
2. $\quad \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$: Variance of X
$\checkmark \quad$ Linear transformation of a random variable X :
3. $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$: Expected value of X
4. $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Your Practice Paper - Analysis and Approaches HL for IBDP Mathematics

28 Binomial Distribution

$\checkmark \quad$ Properties of a random variable $X \sim \mathrm{~B}(n, p)$ following binomial distribution:

1. Only two outcomes from every independent trial (Success and failure)
2. n : Number of trials
3. p : Probability of success
4. $\quad X$: Number of successes in n trials
$\checkmark \quad$ Formulae for binomial distribution:
5. $\mathrm{P}(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}$ for $0 \leq r \leq n, r \in \mathbb{Z}$
6. $\mathrm{E}(X)=n p$: Expected value of X
7. $\operatorname{Var}(X)=n p(1-p)$: Variance of X
8. $\sqrt{n p(1-p)}$: Standard deviation of X
9. $\mathrm{P}(X \leq r)=\mathrm{P}(X<r+1)=1-\mathrm{P}(X \geq r+1)$

29 Continuous Probability Distributions

$\checkmark \quad$ Properties of a continuous random variable X :

$$
p(x)=\left\{\begin{array}{cc}
f(x) & a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

1. $\int_{a}^{b} f(x) \mathrm{d} x=1$
2. $\mathrm{E}(X)=\int_{a}^{b} x \cdot f(x) \mathrm{d} x$: Expected value of X
3. $\quad Q_{2}$: Median of X, which is the solution of the equation $\int_{a}^{Q_{2}} f(x) \mathrm{d} x=0.5$
4. $\quad Q_{1}$: Lower quartile of X, which is the solution of $\int_{a}^{Q_{1}} f(x) \mathrm{d} x=0.25$
5. Q_{3} : Upper quartile of X, which is the solution of $\int_{a}^{Q_{3}} f(x) \mathrm{d} x=0.75$
6. The maximum value of $f(x)$ is the mode of X
7. $\mathrm{E}\left(X^{2}\right)=\int_{a}^{b} x^{2} \cdot f(x) \mathrm{d} x$

30) Nomomomatrutuen

$\checkmark \quad$ Properties of a random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ following normal distribution:

1. μ : Mean
2. σ : Standard deviation
3. The mean, the median and the mode are the same
4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
5. $\quad \mathrm{P}(X<\mu)=\mathrm{P}(X>\mu)=0.5$
6. The total area under the curve is 1
$\checkmark \quad$ Standardization of a normal variable:
7. $\quad Z \sim \mathrm{~N}\left(0,1^{2}\right)$: Standard normal distribution with mean 0 and standard deviation 1
8. $Z=\frac{X-\mu}{\sigma}$ for $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

31 Bivariate Analysis

$\checkmark \quad$ Correlations:

Positive	Strong	$0.75<r<1$
	Moderate	$0.5<r<0.75$
	Weak	$0<r<0.5$
No	$r=0$	
	Weak	$-0.5<r<0$
	Moderate	$-0.75<r<-0.5$
	Strong	$-1<r<-0.75$

where r is the correlation coefficient
$\checkmark \quad$ Linear regression:

1. $y=a x+b$: Regression line of y on x
2. $x=a y+b$: Regression line of x on y

Paper 3 Analysis

$\checkmark \quad$ Nature of paper: Structured question
$\checkmark \quad$ Time allowed: 60 minutes
$\checkmark \quad$ Maximum mark: 55 marks
$\checkmark \quad$ Number of questions: 2
$\checkmark \quad$ Mark range per question: 25 marks to 30 marks
$\checkmark \quad$ Weighting: 20\% of the total mark
$\checkmark \quad$ Ways of assessing:

1. Find
(a) the value of a quantity
(b) the formula of a quantity
(c) an inequality connecting quantities
(d) the limit of a quantity
2. Show
(a) a quantity equals to a value
(b) the formula of a quantity
(c) the limit of a quantity
(d) the recurrence relation of a quantity
3. Solve an equation
4. Geometrically interpret a result
5. Sketch a graph
6. Plot and label a quantity on a diagram
7. Suggest an expression for a quantity
8. Express the formula of a quantity
9. Verify
(a) the value of a quantity
(b) the trueness of a statement
10. Prove the trueness of a statement
11. Explain the trueness of a statement

Notes
\qquad
\qquad \longrightarrow

