Applications and Interpretation Higher Level for IBDP Mathematics Practice Paper Set 1 – Paper 2 (120 Minutes)

Question – Answer Book

Instructions

- 1. Attempt ALL questions. Write your answers in the spaces provided in this Question Answer Book.
- 2. A graphic display calculator is needed.
- **3.** You are suggested to prepare a formula booklet of Applications and Interpretation for IBDP Mathematics when attempting the questions.
- 4. Supplementary answer sheets and graph papers will be supplied on request.
- 5. Unless otherwise specified, ALL working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
- 7. The diagrams in this paper are **NOT** necessarily drawn to scale.
- 8. Information to be read before you start the exam:

	Marker's	Examiner's	
Question	Use Only	Use Only	Maximum
Number	Marks	Marks	Mark
1			17
2			17
3			19
4			12
5			15
6			17
7			13
	Ov	erall	
Paper 2 Total			110

- **1.** The equation of the straight line L_1 is given by 3x + y 10 = 0. The coordinates of the point P are (3, 1).
 - (a) Show that P lies on L_1 .
 - (b) Write down the y-intercept of L_1 .

The coordinates of the point Q are (11, -3). M is the mid-point of PQ.

- (c) Find
 - (i) the coordinates of M;
 - (ii) the gradient of PQ;
 - (iii) the distance between P and Q.

The straight line L_2 passes through P and Q.

(d) Show that L_1 and L_2 are not perpendicular.

The straight line L_3 passes through P and is perpendicular to L_1 .

(e) Show that the equation of L_3 is x-3y=0.

 L_1 and L_3 intersect with the *y*-axis at R and S respectively.

(f) Find the area of the triangle PRS.

[3]

[1]

[1]

[6]

[2]

[4]

2. The relationship between the body temperature and the pulse rate of the students from a sports team is investigated. Six students from the group A of the team are first medically examined and their body temperature and their pulse rates are recorded in the table below.

Student	А	В	С	D	Е	F
Body Temperature ($x^{\circ}C$)	35.8	36.2	36.4	36.7	37.4	37.1
Pulse Rate (y beats per minute)	80	81	87	117	100	93

- (a) The relationship between the variables is modelled by the regression equation y = ax + b.
 - (i) Write down the value of a and of b.
 - (ii) Hence, estimate the pulse rate of a student whose body temperature is $37^{\circ}C$.

[4]

[3]

- (b) (i) Write down the correlation coefficient.
 - (ii) State which **two** of the following describe the correlation between the variables.

positive	strong	zero
negative	weak	moderate

A similar investigation has been completed last year. The pulse rates of 100 students were recorded and the data was presented as follows:

Pulse Rate (y beats per minute)	Frequency
$75 \le y < 85$	16
$85 \le y < 95$	23
$95 \le y < 105$	32
$105 \le y < 115$	12
$115 \le y < 125$	17

Someone claims that the distribution of the data is expected to be evenly distributed. Hence, a χ^2 goodness of fit test is conducted at a 5% significance level.

(c) (i) Write down the null hypothesis of the test.

- (ii) Find the *p*-value.
- (iii) Hence, state the conclusion of the test with a reason.

Another five students from the Group B of the team are also medically examined and their pulse rates are recorded in the table below.

Student	G	Н	I	J	K
Pulse Rate (y beats per minute)	95	99	117	87	110

The team manager wants to know whether the mean pulse rates μ_A and μ_B of the students from the Group A and the Group B respectively are different. A *t*-test is conducted at a 1% significance level.

(d) (i) Write down the alternative hypothesis of the test.

- (ii) Find the p-value.
- (iii) Hence, state the conclusion of the test with a reason.

[5]

[5]

3. The function f is given by $f(x) = \frac{4}{3}x^3 + 5x^2 - 6x + 2$, $x \in \mathbb{R}$.

(a)	Write down the y -intercept of the graph of f .	
(b)	Find $f(3)$.	[1]
	[[2]
(c)	Find $f'(x)$.	[2]
(d)	Solve the equation $f'(x) = 0$.	101
(e)	L Write down the equations of the horizontal tangents of the graph of f	[3]
(f)	[Write down the range of values of w such that the equation $f(x) = w$ has	[2]
	(i) three solutions;	
	(ii) only one solution.	
(g)	Find the gradient of the tangent at $x = 3$.	[4]
(9)		[2]
(h)	Hence, show that the equation of the normal at $x = 3$ is $x + 60y - 3903 = 0$.	
	-	[3]

© SE Production Limited All Rights Reserved 2021

4. Consider the following weighted graph:

- (a) Write down
 - (i) the degree of B;
 - (ii) the number of vertices of odd degree;
 - (iii) the number of vertices of even degree.

Kruskal's algorithm is used to find the minimum spanning tree for this graph.

(b)	State the edge of the smallest weight.	
(c)	By using the algorithm, find the minimum spanning tree.	[1]
(d)	Write down the weight of the minimum spanning tree.	[3]
(e)	Use the Chinese postman algorithm to find a possible route of minimum weight that passes through all edges, starting and finishin $\rm C$.	[1] g at
(6)		[3]
(f)	Write down the corresponding weight of the route.	[1]

[3]

5. Let
$$\mathbf{M} = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}$$
.
(a) (i) Find \mathbf{M}^2 .
(ii) Find \mathbf{M}^3 .
(iii) By using the above results, write down \mathbf{M}^{30} .
(iii) By using the above results, write down \mathbf{M}^{30} .
Let $s(n) = \mathbf{M} + \mathbf{M}^2 + \mathbf{M}^3 + \dots + \mathbf{M}^n$, where $n \ge 1$.
(b) (i) Write down $s(2)$.
(ii) Write down $s(3)$.
(iii) By using the above results, find $s(30)$.
Let $r(n) = \mathbf{M} + \mathbf{M}^2 + \mathbf{M}^4 + \mathbf{M}^8 + \dots + \mathbf{M}^{2^{n-4}}$, where $n \ge 1$.
(6)

(c) Find
$$r(10)$$
.

6. In an experiment, a metal ball moves with velocity $v \text{ cms}^{-1}$ and displacement x cm with respect to the starting point O. By considering the rate of change of its velocity, the relationship between the variables can be modelled by the differential equation $\frac{d^2x}{dt^2} = 25x$.

(a) By using
$$v = \frac{dx}{dt}$$
, express the differential equation in a coupled system.

[1]

[3]

[2]

[2]

Euler's method with a step length of 0.2 is used to approximate the displacement of the particle at t = 1. It is given that initially the particle is at rest with displacement one centimetre.

- (b) Find, when t = 0.2, the approximate value of
 - (i) *v*;
 - (ii) *x*. [4]
- (c) Write down the approximate value of the displacement at
 - (i) t = 0.4;
 - (ii) t = 1;
 - (iii) t = 2.6.

The system can be expressed by a matrix equation $\dot{\mathbf{X}} = \mathbf{M}\mathbf{X}$, where \mathbf{M} is a

2×2 matrix, and $\dot{\mathbf{X}} = \begin{pmatrix} \frac{dv}{dt} \\ \frac{dx}{dt} \end{pmatrix}$ and $\mathbf{X} = \begin{pmatrix} v \\ x \end{pmatrix}$ are two 2×1 matrices. Let λ_1 and λ_2

be the eigenvalues of \mathbf{M} , where $\lambda_1 < \lambda_2$.

(d) Find
$$det(\mathbf{M} - \lambda \mathbf{I})$$
, giving the answer in terms of λ .

(e) Hence, write down the values of λ_1 and λ_2 .

Let \mathbf{v}_1 and \mathbf{v}_2 be the eigenvectors of \mathbf{M} corresponding to λ_1 and λ_2 respectively.

(f) Write down \mathbf{v}_1 and \mathbf{v}_2 .

(g) Hence, show that the particular solution of x is $x = 0.5e^{-5t} + 0.5e^{5t}$.

[3]

[2]

7. In a game, two balls A and B are moving in a three-dimensional space, which can be modelled by a three-dimensional coordinate plane. At the start -10^{1} of the game, A is at (5, 5, 0) and its velocity vector is 10 0 Write down the vector equation for the displacement of A, giving the (a) answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, [2] After p seconds, A is at (-85, 95, 0). (b) Find p. [2] At the start of the game, B is at (0, 0, -50). After 5 seconds, it is at (-50, 50, 0). (c) Find the velocity vector of B. [2] Write down the vector equation for the displacement of B, giving the (d) answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, [2] Find the shortest distance between A and B. (e) [4] (f) Hence, write down the time when A and B are closest to each other. [1]

© SE Production Limited All Rights Reserved 2021