Analysis and Approaches Standard Level for IBDP Mathematics Practice Paper Set 1 – Paper 1 (90 Minutes)

Question – Answer Book

Instructions

- This paper consists of TWO sections: A and B.
- 2. Attempt ALL questions. Write your answers in the spaces provided in this Question Answer Book.
- **3.** No calculator is allowed.
- 4. You are suggested to prepare a formula booklet of Analysis and Approaches for IBDP Mathematics when attempting the questions.
- 5. Supplementary answer sheets and graph papers will be supplied on request.
- 6. Unless otherwise specified, ALL working must be clearly shown.
- Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
- 8. The diagrams in this paper are **NOT** necessarily drawn to scale.
- **9.** Information to be read before you start the exam:

	Morkor's	Eveminer's			
	Markers	Examiner's			
	Use Only	Use Only			
Question Number	Marks	Marks	Maximum Mark		
Section A					
1			6		
2			6		
3			5		
4			6		
5			8		
6			8		
Section A Total			39		
Section B					
7			15		
8			14		
9			12		
Section B Total			41		
Overall					
Paper 1 Total			80		

Section A (39 marks)

1. The following Venn diagram shows the events *A* and *B*, where P(A) = 0.6. The values in the diagram are probabilities.

- (a) Find m.
- [2] (b) Find *n*.
- (c) Find P(B').

- **2.** There are 15 items in a data set. The sum of the items is 300.
 - (a) Find the mean.

The variance of this data set is 9. Each value in the set is multiplied by -2.

- (b) (i) Write down the value of the new mean.
 - (ii) Find the value of the new variance.
 - (iii) Hence, write down the value of the new standard deviation.

[4]

- **3.** A straight line L_1 passes through the points (8, 0) and (24, 32).
 - (a) Find the equation of L_1 , giving the answer in general form.
 - (b) The equation of another straight line, L_2 , is given as x ay + 2021 = 0, $a \in \mathbb{R}$. If L_1 and L_2 are perpendicular, find a.

[2]

[3]

4.	(a)	Show that $(2n+1)^2 + (2n+3)^2 + (2n+5)^2 = 3(4n^2 + 12n + 11) + 2$, where $n \in \mathbb{Z}$.	101
	(b)	Hence, or otherwise, prove that the sum of the squares of any three consecutive odd numbers is greater than a multiple of 3 by 2 .	[3]
	. <u></u>		

5. Let $f(x) = px^3 + qx^2 - 2x + 1$. At x = 1, the slope of the normal of the curve of f is $-\frac{1}{15}$. It is given that $f^{-1}(41) = 2$, find the value of p and of q.

[8]

6. The equation $kx^2 + (8+k)x - 1 = 0$ has no real roots. Find the possible values of k.

[8]

Section B (41 marks)

- 7. A rectangular box has length 4x cm, width 2x cm and height y cm, where x, y > 0. It is given that the sum of the length and the height of the rectangular box is 20 cm.
 - (a) Write down an expression for y in terms of x.
 - Express V in terms of x, where V cm³ is the volume of the rectangular box.
 - (c) Find $\frac{\mathrm{d}V}{\mathrm{d}x}$.

[2]

[2]

- (d) Find the value of x when V attains its maximum, justifying the answer. [7]
- (e) Hence, find the maximum volume.
- (f) Write down the height of the rectangular box when V attains its maximum.

[1]

- 8. Let $f(x) = \cos^4 x$, $x \in \mathbb{R}$.
 - (a) (i) Write down the range of the function f.
 - (ii) Consider f(x) = 1, $0 \le x \le 2\pi$. Find the number of solutions to this equation.
 - (b) Find f'(x), giving your answer in the form $a \sin^p x \cos^q x$ where a, p, $q \in \mathbb{Z}$.
 - (c) Let $g(x) = 2\sin x$ for $0 \le x \le \pi$. Find the total area of the regions bounded by the graph of y = f(x)g(x) and the *x*-axis.

[7]

[5]

9. The graph of f is given by $f(t) = a \sin b(t-c) + d$, a > 0, $t \ge 0$.

When t = 2, there is a maximum value of 37, at P. When t = 11, there is a minimum value of -5. The graph of f is strictly decreasing at 2 < t < 11.

- (a) (i) Show that a = 21.
 - (ii) Find the exact value of b.
 - (iii) Find the value of d.
 - (iv) Write down a possible value of c.

[7] The graph of *f* is then transformed to the graph of *g* by a horizontal stretch of scale factor 3, followed by a translation of $\begin{pmatrix} 17\\ 8 \end{pmatrix}$. Let P' be the image of P.

(b) Find the coordinates of P'.

The graph of g is then transformed to the graph of h by a translation of $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$.

(c) Give a full geometric description of the transformation that maps the graph of h to the graph of f.

[3]

