Analysis and Approaches Standard Level for IBDP Mathematics
 Practice Paper Set 1 - Paper 1 (90 Minutes)

Question - Answer Book

Instructions

1. This paper consists of TWO sections: A and B.
2. Attempt ALL questions. Write your answers in the spaces provided in this Question - Answer Book.
3. No calculator is allowed.
4. You are suggested to prepare a formula booklet of Analysis and Approaches for IBDP Mathematics when attempting the questions.
5. Supplementary answer sheets and graph papers will be supplied on request.
6. Unless otherwise specified, ALL working must be clearly shown.
7. Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
8. The diagrams in this paper are NOT necessarily drawn to scale.
9. Information to be read before you start the exam:

Section A (39 marks)

1. The following Venn diagram shows the events A and B, where $\mathrm{P}(A)=0.6$. The values in the diagram are probabilities.

(a) Find m.
(b) Find n.
(c) Find $\mathrm{P}\left(B^{\prime}\right)$.
\qquad
2. There are 15 items in a data set. The sum of the items is 300 .
(a) Find the mean.

The variance of this data set is 9 . Each value in the set is multiplied by -2 .
(b) (i) Write down the value of the new mean.
(ii) Find the value of the new variance.
(iii) Hence, write down the value of the new standard deviation.
\qquad
3. A straight line L_{1} passes through the points $(8,0)$ and $(24,32)$.
(a) Find the equation of L_{1}, giving the answer in general form.
(b) The equation of another straight line, L_{2}, is given as x-ay $+2021=0$, $a \in \mathbb{R}$. If L_{1} and L_{2} are perpendicular, find a.
\qquad
4. (a) Show that $(2 n+1)^{2}+(2 n+3)^{2}+(2 n+5)^{2}=3\left(4 n^{2}+12 n+11\right)+2$, where $n \in \mathbb{Z}$.
(b) Hence, or otherwise, prove that the sum of the squares of any three consecutive odd numbers is greater than a multiple of 3 by 2 .
\qquad
5. Let $f(x)=p x^{3}+q x^{2}-2 x+1$. At $x=1$, the slope of the normal of the curve of f is $-\frac{1}{15}$. It is given that $f^{-1}(41)=2$, find the value of p and of q.
\qquad
6. The equation $k x^{2}+(8+k) x-1=0$ has no real roots. Find the possible values of k.
\qquad

Section B (41 marks)

7. A rectangular box has length $4 x \mathrm{~cm}$, width $2 x \mathrm{~cm}$ and height $y \mathrm{~cm}$, where x, $y>0$. It is given that the sum of the length and the height of the rectangular box is 20 cm .
(a) Write down an expression for y in terms of x.
(b) Express V in terms of x, where $V \mathrm{~cm}^{3}$ is the volume of the rectangular box.
(c) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
(d) Find the value of x when V attains its maximum, justifying the answer.
(e) Hence, find the maximum volume.
(f) Write down the height of the rectangular box when V attains its maximum.
\qquad
8. Let $f(x)=\cos ^{4} x, x \in \mathbb{R}$.
(a) (i) Write down the range of the function f.
(ii) Consider $f(x)=1,0 \leq x \leq 2 \pi$. Find the number of solutions to this equation.
(b) Find $f^{\prime}(x)$, giving your answer in the form $a \sin ^{p} x \cos ^{q} x$ where a, p, $q \in \mathbb{Z}$.
(c) Let $g(x)=2 \sin x$ for $0 \leq x \leq \pi$. Find the total area of the regions bounded by the graph of $y=f(x) g(x)$ and the x-axis.
\qquad
9. The graph of f is given by $f(t)=a \sin b(t-c)+d, a>0, t \geq 0$.

When $t=2$, there is a maximum value of 37 , at P . When $t=11$, there is a minimum value of -5 . The graph of f is strictly decreasing at $2<t<11$.
(a) (i) Show that $a=21$.
(ii) Find the exact value of b.
(iii) Find the value of d.
(iv) Write down a possible value of c.

The graph of f is then transformed to the graph of g by a horizontal stretch of scale factor 3 , followed by a translation of $\binom{17}{8}$. Let P^{\prime} be the image of P .
(b) Find the coordinates of P^{\prime}.

The graph of g is then transformed to the graph of h by a translation of $\binom{-5}{12}$.
(c) Give a full geometric description of the transformation that maps the graph of h to the graph of f.
\qquad
END OF PAPER

