Your Intensive Notes Analysis and Approaches Higher Level for IBDP Mathematics

Algebra

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Topics Covered

1 Standard Form Page 3
2 Arithmetic Sequences Page 5
3 Geometric Sequences Page 12
4 Binomial Theorem Page 26
5 Proofs and Identities Page 35
6 Mathematical Induction Page 40
7 Systems of Equations Page 45
8 Permutations and Combinations Page 49
9 Complex Numbers Page 54

Important Notes

Standard form: A number in the format $\pm a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$ (k is an integer)

Notes on GDC			
TEXAS TI-84 Plus CE	TEXAS TI-Nspire CX mode \rightarrow SCI on the 2nd row to express any number in its standard form Doc \rightarrow Setting \& Status \rightarrow Document Settings... \rightarrow Scientific on the Exponential Format row to express any number in its standard form	CASIO fx-CG50 SHIFT \rightarrow Sci on the Display row its standard form	

Example 1.1

A rectangle is 2376 cm long and 693 cm wide.
(a) Find the diagonal length of the rectangle, giving the answer in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.

The required diagonal length
$=\sqrt{2376^{2}+693^{2}}$
Pythagoras' theorem (A1)
$=2475 \mathrm{~cm}$
$=2.475 \times 10^{3} \mathrm{~cm}$

$$
a=2.475 \& k=3(\mathrm{~A} 1)
$$

(b) Find the area of the rectangle, giving the answer correct to two significant figures and in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.

The required area
$=(2376)(693)$
Base Length \times Height (A1)
$=1646568 \mathrm{~cm}^{2}$
$=1600000 \mathrm{~cm}^{2}$
$=1.6 \times 10^{6} \mathrm{~cm}^{2}$
Round off to 2 sig. fig.
$a=1.6 \& k=6$ (A1)

Exercise 1.1

The base length and the height of a right-angled triangle are 1107 mm and 4920 mm respectively.
(a) Find the length of the hypotenuse of the triangle, giving the answer in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.
(b) Using (a), find the perimeter of the triangle, giving the answer correct to two significant figures and in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.
(c) Find the area of the triangle, giving the answer correct to four significant figures and in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.

2
 Arithmetic Sequences

Important Notes

An arithmetic sequence is a sequence such that the next term is generated by adding or subtracting the same number from the previous term.

Properties of an arithmetic sequence $u_{1}, u_{2}, u_{3}, \cdots$:

1. u_{1} : First term
2. $d=u_{2}-u_{1}=u_{n}-u_{n-1}$: Common difference
3. $u_{n}=u_{1}+(n-1) d$: General term (nth term)
4. $\quad S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]=\frac{n}{2}\left[u_{1}+u_{n}\right]$: Sum of the first n terms
$\sum_{r=1}^{n} u_{r}=u_{1}+u_{2}+u_{3}+\cdots+u_{n-1}+u_{n}:$ Summation sign

Notes on GDC		
TEXAS TI-84 Plus CE $y=$ to input the general term \rightarrow 2nd window to set the starting row \rightarrow 2nd graph to find the value of the term needed	TEXAS TI-Nspire CX Graph to input the general term to generate a table \rightarrow ctrl T to generate a table \rightarrow menu 25 to set the starting row to find the value of the term needed	CASIO fx-CG50 Table to input the general term to generate a table \rightarrow F5 to set the starting row \rightarrow F6 to find the value of the term needed

Example 1.2

Consider the arithmetic sequence $15,21,27, \cdots$.
(a) Write down d, the common difference of this sequence.

$$
\begin{align*}
& d=21-15 \\
& d=6 \tag{A1}
\end{align*}
$$

$$
d=u_{2}-u_{1}
$$

(b) Find u_{8}.
$u_{8}=u_{1}+(8-1) d$
$u_{8}=15+(8-1)(6)$
$u_{8}=15+42$
$u_{8}=57$
$u_{n}=u_{1}+(n-1) d$
Correct approach (A1)
(c) Find n such that $u_{n}=75$.
[2]
$u_{n}=75$
$\therefore 15+(n-1)(6)=75$
$6(n-1)=60$
$n-1=10$
$n=11$
Set up an equation
Correct equation (A1)
(d) Find an expression of the sum of the first n terms of this sequence.

The sum of the first n terms
$=S_{n}$
$=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]$
$S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right](\mathrm{M} 1)$
$=\frac{n}{2}[2(15)+(n-1)(6)]$
$u_{1}=15 \quad \& \quad d=6(\mathrm{~A} 1)$
$=\frac{n}{2}(30+6 n-6)$
$=\frac{n}{2}(6 n+24)$
$=3 n^{2}+12 n$
(e) Hence, find the sum of the first ten terms of this sequence.

The required sum
$=S_{10}$
$=3(10)^{2}+12(10)$
$n=10$ (M1)
$=300+120$
$=420$
(A1)

Exercise 1.2

Consider the arithmetic sequence $\frac{39}{10}, \frac{38}{10}, \frac{37}{10}, \cdots$.
(a) Write down d, the common difference of this sequence.
(b) Find u_{12}.
(c) Find n such that $u_{n}=\frac{7}{10}$.
(d) Find an expression of the sum of the first n terms of this sequence.
(e) Hence, find the sum of the first ten terms of this sequence.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Example 1.3

Consider the arithmetic sequence with first term 70 and common difference -3.5 . It is given that the r th term of the sequence is zero.
(a) Find r.
$u_{r}=0$
$\therefore 70+(r-1)(-3.5)=0$
$-3.5(r-1)=-70$
$r-1=20$
$r=21$

Set up an equation
Correct equation (A1)
(b) Find the maximum value of the sum of the first n terms of this sequence.

The sum of the first n terms
$=S_{n}$
$=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]$
$S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right](\mathrm{M} 1)$
$=\frac{n}{2}[2(70)+(n-1)(-3.5)]$
$=\frac{n}{2}(140-3.5 n+3.5)$
$=\frac{n(143.5-3.5 n)}{2}$
By considering the graph of $y=\frac{n(143.5-3.5 n)}{2}$,
the coordinates of the maximum point are ($20.5,735.4375$), and the graph passes through $(20,735)$ and $(21,735)$.
Thus, the maximum value is 735 .

GDC approach (M1)
(A1)

Exercise 1.3

Consider the arithmetic sequence with first term 120 and common difference -1.25 . It is given that the m th term of the sequence is zero.
(a) Find m.
(b) Find the maximum value of the sum of the first n terms of this sequence.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

3 Geometric Sequences

Important Notes

A geometric sequence is a sequence such that the next term is generated by multiplying or being divided by the same number from the previous term.

Properties of a geometric sequence $u_{1}, u_{2}, u_{3}, \cdots$:

1. u_{1} : First term
2. $r=u_{2} \div u_{1}=u_{n} \div u_{n-1}$: Common ratio
3. $u_{n}=u_{1} \times r^{n-1}$: General term (nth term)
4. $S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}$: Sum of the first n terms
5. $S_{\infty}=u_{1}+u_{2}+u_{3}+\cdots+u_{n}+\cdots=\frac{u_{1}}{1-r}$: Sum of infinite number of terms (Sum to infinity), valid only when $-1<r<1$

Properties of compound interest:

1. $\quad P V$: Present value
2. $r \%$: Nominal annual interest rate
3. k : Number of compounded periods in one year
4. n : Number of years
5. $F V=P V\left(1+\frac{r \%}{k}\right)^{k n}$: Future value
6. $\quad I=F V-P V$: Interest

Notes on GDC		
TEXAS TI-84 Plus CE $y=$ to input the general term \rightarrow 2nd window to set the starting row \rightarrow 2nd graph to find the value of the term needed	TEXAS TI-Nspire CX Graph to input the general term to generate a table \rightarrow ctrl T to generate a table \rightarrow menu 25 to set the starting row to find the value of the term needed	CASIO fx-CG50 Table to input the general term to generate a table \rightarrow F5 to set the starting row \rightarrow F6 to find the value of the term needed

Example 1.4

Consider the sequence $\ln x, a \ln x, \frac{1}{2} \ln x, \cdots, x>0, a \neq 0, x, a \in \mathbb{R}$.
(a) Consider the case where the sequence is arithmetic.
(i) Find a.
[2]

$$
\begin{align*}
& a \ln x-\ln x=\frac{1}{2} \ln x-a \ln x \\
& a-1=\frac{1}{2}-a \\
& 2 a=\frac{3}{2} \\
& a=\frac{3}{4} \tag{A1}
\end{align*}
$$

$$
d=u_{2}-u_{1}=u_{3}-u_{2}(\mathrm{~A} 1)
$$

(ii) Hence, express the common difference in terms of $\ln x$.

The common difference

$$
\begin{align*}
& =\frac{3}{4} \ln x-\ln x \\
& =-\frac{1}{4} \ln x \tag{A1}
\end{align*}
$$

$$
d=u_{2}-u_{1}(\mathrm{~A} 1)
$$

(b) Consider the case where the sequence is geometric.
(i) Find the possible values of a.
$a \ln x \div \ln x=\frac{1}{2} \ln x \div a \ln x$
$r=u_{2} \div u_{1}=u_{3} \div u_{2}(\mathrm{~A} 1)$
$a=\frac{1}{2 a}$
$2 a^{2}=1$
$a^{2}=\frac{1}{2}$
$a=\frac{1}{\sqrt{2}}$ or $a=-\frac{1}{\sqrt{2}}$
(ii) Hence, find an expression of the sum of the first n terms of this sequence if $a>0$, giving the answer in terms of $\ln x$ and 2^{M}, $M \in \mathbb{R}$.

The sum of the first n terms
$=S_{n}$
$=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$
$S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}(\mathrm{M} 1)$
$=\frac{(\ln x)\left(1-\left(\frac{1}{\sqrt{2}}\right)^{n}\right)}{1-\frac{1}{\sqrt{2}}}$
$u_{1}=\ln x \quad \& \quad r=\frac{1}{\sqrt{2}}(\mathrm{~A} 1)$
$=\frac{(\ln x)\left(1-\left(\frac{1}{2^{0.5}}\right)^{n}\right)}{1-\frac{1}{2^{0.5}}}$
$\sqrt{2}=2^{0.5}(\mathrm{M} 1)$
$=\frac{(\ln x)\left(1-\left(2^{-0.5}\right)^{n}\right)}{1-2^{-0.5}}$
$=\frac{1-2^{-0.5 n}}{1-2^{-0.5}} \ln x$

It is given that $S_{\infty}=2-\sqrt{2}$ when $a<0$.
(iii) Find x.

$$
\begin{array}{ll}
S_{\infty}=2-\sqrt{2} & \text { Set up an equation } \\
\therefore \frac{\ln x}{1-\left(-\frac{1}{\sqrt{2}}\right)}=2-\sqrt{2} & \text { Correct equation (A1) } \\
\ln x=(2-\sqrt{2})\left(1+\frac{1}{\sqrt{2}}\right) & \\
\ln x=2+\sqrt{2}-\sqrt{2}-1 & \text { Simplify the R.H.S. (A1) } \\
\ln x=1 & \text { (A1) }
\end{array}
$$

Consider the sequence $\log x, k \log x, \frac{1}{5} \log x, \cdots, x>0, k \neq 0, x, k \in \mathbb{R}$.
(a) Consider the case where the sequence is arithmetic.
(i) Find k.
(ii) Hence, express the common difference in terms of $\log x$.
(b) Consider the case where the sequence is geometric.
(i) Find the possible values of k.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

(ii) Hence, find an expression of the sum of the first n terms of this sequence if $k<0$, giving the answer in terms of $\log x$ and 5^{M}, $M \in \mathbb{R}$.

It is given that $S_{\infty}=\frac{5+\sqrt{5}}{2}$ when $k>0$.
(iii) Find x.

Example 1.5

Consider the geometric sequence $\frac{1}{243}, \frac{1}{81}, \frac{1}{27}, \cdots$.
(a) Write down r, the common ratio of this sequence.
$r=\frac{1}{81} \div \frac{1}{243}$
$r=3$
$r=u_{2} \div u_{1}$
(b) Find u_{12}.
$u_{12}=u_{1} \times r^{12-1}$
$u_{n}=u_{1} \times r^{n-1}$
$u_{12}=\frac{1}{243} \times 3^{12-1}$
$u_{1}=\frac{1}{243} \& r=3(\mathrm{~A} 1)$
$u_{12}=729$
(c) Find n such that $u_{n}=81$.
[2]
$u_{n}=81$
Set up an equation
$\therefore \frac{1}{243} \times 3^{n-1}=81$
Correct equation (A1)
$\frac{1}{243} \times 3^{n-1}-81=0$
By considering the graph of $y=\frac{1}{243} \times 3^{n-1}-81$,
the horizontal intercept is 10 .

$$
\begin{equation*}
\therefore n=10 \tag{A1}
\end{equation*}
$$

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

(d) Find an expression of the sum of the first n terms of this sequence.

The sum of the first n terms
$=S_{n}$
$=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$
$S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}(\mathrm{M} 1)$
$=\frac{\frac{1}{243}\left(1-3^{n}\right)}{1-3}$
$u_{1}=\frac{1}{243} \& r=3(\mathrm{~A} 1)$
$=-\frac{1}{486}\left(1-3^{n}\right)$
(e) Hence, find the sum of the first twelve terms of this sequence.

The required sum
$=S_{12}$
$=-\frac{1}{486}\left(1-3^{12}\right)$ $n=12$ (M1)
$=1093.497942$
$=1090$
(f) Explain why the sum to infinity of this geometric sequence does not exist.

The common ratio is 3 which is not between
-1 and 1 .
(g) Find the least value of n such that $S_{n}>10000$.
$S_{n}>10000$
$\therefore-\frac{1}{486}\left(1-3^{n}\right)>10000$
$-\frac{1}{486}\left(1-3^{n}\right)-10000>0$
By considering the graph of
$y=-\frac{1}{486}\left(1-3^{n}\right)-10000$, the graph is above the horizontal axis when $n>14.014543$.
\therefore The least value of n is 15 .
GDC approach (M1)
(A1)

Exercise 1.5

Consider the geometric sequence $\frac{7}{12}, \frac{7}{16}, \frac{21}{48}, \cdots$.
(a) Write down r, the common ratio of this sequence.
(b) Find u_{7}.
(c) Find n such that $u_{n}=\frac{189}{1024}$.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

(d) Find an expression of the sum of the first n terms of this sequence.
(e) Hence, find the sum of the first fifteen terms of this sequence.
(f) Explain why the sum to infinity of this geometric sequence exists.
(g) Find the greatest value of n such that $S_{n}<2.3315$.

Example 1.6

On 1st January 2024, Judy invests $\$ P$ in an account that pays a nominal annual interest rate of 6%, compounded half-yearly. The amount of money in her account at the end of each year follows a geometric sequence with common ratio R.
(a) Find the exact value of R.

The amount of money after one year

$$
\begin{array}{ll}
=P\left(1+\frac{6 \%}{2}\right)^{(2)(1)} & F V=P V\left(1+\frac{r \%}{k}\right)^{k n}(\mathrm{M} 1) \\
\therefore R=\left(1+\frac{6 \%}{2}\right)^{(2)(1)} & R=\frac{F V}{P V}(\mathrm{~A} 1) \\
R=1.0609 & \text { (A1) }
\end{array}
$$

It is given that there is no further deposit to or any withdrawal from the account.
(b) Find the year in which the amount of money in Judy's account will become double the amount she invested.
$F V=2 P$
$\therefore P\left(1+\frac{6 \%}{2}\right)^{2 n}=2 P$
$\left(1+\frac{6 \%}{2}\right)^{2 n}=2$
$\left(1+\frac{6 \%}{2}\right)^{2 n}-2=0$
By considering the graph of
$y=\left(1+\frac{6 \%}{2}\right)^{2 n}-2$, the horizontal intercept is
11.724886 .
\therefore The required year is 2035 .

GDC approach (M1) (A1)

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

It is given that $P=22000$.
(c) (i) Find the amount that Judy will have in her account after 3 years.

The amount

$$
\begin{array}{ll}
=P V\left(1+\frac{r \%}{k}\right)^{k n} & F V=P V\left(1+\frac{r \%}{k}\right)^{k n}(\mathrm{M} 1) \\
=22000\left(1+\frac{6 \%}{2}\right)^{(2)(3)} & r=6, k=2 \& n=3(\mathrm{~A} 1) \\
=\$ 26269.15052 &
\end{array}
$$

(ii) Hence, find the interest that Judy can earn after 3 years.

The interest

$$
\begin{array}{ll}
=26269.15052-22000 & I=F V-P V(\mathrm{M} 1) \tag{2}\\
=\$ 4269.150524 & \\
=\$ 4270 & (\mathrm{~A} 1)
\end{array}
$$

Starting from 1st January 2024, Judy's friend Cady invests $\$ 16000$ in an account that pays a nominal annual interest rate of 8%, compounded monthly. It is given that the amount of money in Cady's account will exceed that in Judy's account after several years.
(d) Find the minimum number of complete years when the amount of money in Cady's account exceeds that in Judy's account.

Let t be the number of years required for the amount of money in Cady's account exceeding that in Judy's account.
$16000\left(1+\frac{8 \%}{12}\right)^{12 t}>22000\left(1+\frac{6 \%}{2}\right)^{2 t}$
Correct inequality (A1)
$16000\left(1+\frac{8 \%}{12}\right)^{12 t}-22000\left(1+\frac{6 \%}{2}\right)^{2 t}>0$
By considering the graph of
$y=16000\left(1+\frac{8 \%}{12}\right)^{12 t}-22000\left(1+\frac{6 \%}{2}\right)^{2 t}$, the
graph is above the horizontal axis when $t>15.446241$.

GDC approach (M1)
\therefore The minimum number of complete years is 16.
(e) Find the year when the sum of the amount of money in Cady's account and that in Judy's account first reaches $\$ 70000$.

Let T be the number of years required for the sum of the amount of money in Cady's account and that in Judy's account first reaches $\$ 70000$.
$16000\left(1+\frac{8 \%}{12}\right)^{12 T}+22000\left(1+\frac{6 \%}{2}\right)^{2 T} \geq 70000$
Correct inequality (A1)
$16000\left(1+\frac{8 \%}{12}\right)^{12 T}+22000\left(1+\frac{6 \%}{2}\right)^{2 T}-70000 \geq 0$
By considering the graph of
$y=16000\left(1+\frac{8 \%}{12}\right)^{12 T}$
$+22000\left(1+\frac{6 \%}{2}\right)^{2 T}-70000$, the graph is above
the horizontal axis when $T>8.9489625$. GDC approach (M1)
\therefore The required year is 2032 .

Exercise 1.6

On 1st January 2025, April invests $\$ P$ in an account that pays a nominal annual interest rate of 8%, compounded quarterly. The amount of money in her account at the end of each year follows a geometric sequence with common ratio R.
(a) Find the exact value of R.

It is given that there is no further deposit to or any withdrawal from the account.
(b) Find the year in which the amount of money in April's account will become 2.5 times the amount she invested.

It is given that $P=10000$.
(c) (i) Find the amount that April will have in her account after 4 years.
(ii) Hence, find the interest that April can earn after 4 years.

Starting from 1st January 2025, April's sister Bea invests $\$ 15000$ in an account that pays a nominal annual interest rate of 3%, compounded half-yearly. It is given that the amount of money in April's account will exceed that in Bea's account after several years.
(d) Find the minimum number of complete years when the amount of money in April's account exceeds that in Bea's account.
(e) Find the year when the sum of the amount of money in April's account and that in Bea's account first reaches $\$ 30500$.

4 Binomial Theorem

Important Notes

Properties of factorials and binomial coefficients:

1. $n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot 3 \cdot 2 \cdot 1: n$ factorial
2. $0!=1$
3. $\quad C_{r}^{n}=\frac{n!}{r!(n-r)!}$: Binomial coefficient
4. $\quad C_{0}^{n}=C_{n}^{n}=1$
5. $\quad C_{1}^{n}=C_{n-1}^{n}=n$
6. $\quad C_{r}^{n}=C_{n-r}^{n}$ for $0 \leq r \leq n, r, n \in \mathbb{Z}^{+}$
7. $\quad C_{2}^{n}=\frac{(n)(n-1)}{(2)(1)}$ can be expressed as a fraction in which both numerator and denominator are the product of two numbers, start descending from n and 2 respectively
8. $\quad C_{3}^{n}=\frac{(n)(n-1)(n-2)}{(3)(2)(1)}$ can be expressed as a fraction in which both numerator and denominator are the product of three numbers, start descending from n and 3 respectively

Pascal triangle for finding binomial coefficients:

Properties of binomial theorem:

1. $(a+b)^{n}=a^{n}+C_{1}^{n} a^{n-1} b^{1}+C_{2}^{n} a^{n-2} b^{2}+\cdots+C_{r}^{n} a^{n-r} b^{r}+\cdots+C_{n-1}^{n} a^{1} b^{n-1}+b^{n}$: Binomial theorem for $0 \leq r \leq n, r, n \in \mathbb{Z}^{+}$
2. $\quad C_{r}^{n} a^{n-r} b^{r}$: General term (Term in $\left.b^{r}\right)$

Properties of extended binomial theorem:

1. $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots$: Extended binomial theorem for $n \in \mathbb{Q}$, valid only when $-1<x<1$
2. $(a+b)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n}=a^{n}\left[1+n\left(\frac{b}{a}\right)+\frac{n(n-1)}{2!}\left(\frac{b}{a}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{b}{a}\right)^{3}+\cdots\right]$ for $n \in \mathbb{Q}$, valid only when $-1<\frac{b}{a}<1$

Notes on GDC		
TEXAS TI-84 Plus CE $y=$ to input the general term \rightarrow 2nd window to set the starting row $\rightarrow 2$ nd graph to find the value of the term needed	TEXAS TI-Nspire CX Graph to input the general term to generate a table \rightarrow ctrl to generate a table \rightarrow menu 215 to set the starting row to find the value of the term needed	CASIO fx-CG50 Table to input the general term to generate a table \rightarrow F5 to set the starting row \rightarrow F6 to find the value of the term needed

Example 1.7

The binomial expansion of $(1+p x)^{n}$ is $1+24 x+q x^{2}+\cdots+4096 x^{6}, n \in \mathbb{Z}^{+}$, $p, q \in \mathbb{R}$. Find the values of n, p and q.

$$
\begin{aligned}
& (1+p x)^{n} \\
& =1^{n}+C_{1}^{n} 1^{n-1}(p x)^{1}+C_{2}^{n} 1^{n-2}(p x)^{2}+\cdots+(p x)^{n} \\
& =1+(n)(1)(p x)+\left(\frac{(n)(n-1)}{(2)(1)}\right)(1)\left(p^{2} x^{2}\right)+\cdots+p^{n} x^{n} \\
& =1+n p x+\frac{n(n-1) p^{2}}{2} x^{2}+\cdots+p^{n} x^{n}
\end{aligned}
$$

Binomial theorem (M1)

$$
C_{1}^{n}=n \& C_{2}^{n}=\frac{n(n-1)}{2}(\mathrm{~A} 1)
$$

The term of the largest power of x is $4096 x^{6}$.

$$
\begin{align*}
& \therefore n=6 \tag{A1}\\
& n p x=24 x \\
& \therefore 6 p x=24 x \\
& p=4 \tag{A1}\\
& \frac{n(n-1) p^{2}}{2} x^{2}=q x^{2} \\
& \therefore \frac{6(6-1) 4^{2}}{2} x^{2}=q x^{2} \\
& q=240 \tag{A1}
\end{align*}
$$

Correct equation (A1)

Correct equation (A1)

The binomial expansion of $(1+p x)^{n}$ is $1+\frac{10}{3} x+\frac{40}{9} x^{2}+q x^{3}+\cdots+p^{n} x^{n}, n \in \mathbb{Z}^{+}$, $p, q \in \mathbb{R}$. Find the values of n, p and q.

Example 1.8

The binomial expansion of $\sqrt{1+p x}+\frac{1}{3+x}, p \in \mathbb{R}^{+}$, in ascending powers of x as far as the term in x^{2}, is $q+\frac{8}{9} x+r x^{2}, q, r \in \mathbb{R}$.
(a) Find the values of p, q and r.

$$
\begin{align*}
& \sqrt{1+p x}+\frac{1}{3+x} \\
& =(1+p x)^{\frac{1}{2}}+(3+x)^{-1} \\
& =(1+p x)^{\frac{1}{2}}+3^{-1}\left(1+\frac{x}{3}\right)^{-1} \\
& =\left[1+\left(\frac{1}{2}\right)(p x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(p x)^{2}+\cdots\right] \\
& +\frac{1}{3}\left[1+(-1)\left(\frac{x}{3}\right)+\frac{(-1)(-2)}{2!}\left(\frac{x}{3}\right)^{2}+\cdots\right] \\
& =\left[1+\frac{1}{2} p x-\frac{1}{8} p^{2} x^{2}+\cdots\right]+\frac{1}{3}\left[1-\frac{1}{3} x+\frac{1}{9} x^{2}+\cdots\right] \quad a+b x+c x^{2} \text { (A1) } \\
& =\left[1+\frac{1}{2} p x-\frac{1}{8} p^{2} x^{2}+\cdots\right]+\left[\frac{1}{3}-\frac{1}{9} x+\frac{1}{27} x^{2}+\cdots\right] \\
& =\frac{4}{3}+\left(\frac{1}{2} p-\frac{1}{9}\right) x+\left(\frac{1}{27}-\frac{1}{8} p^{2}\right) x^{2}+\cdots \\
& \therefore q=\frac{4}{3} \tag{A1}\\
& \frac{1}{2} p-\frac{1}{9}=\frac{8}{9} \\
& \frac{1}{2} p=1 \\
& p=2 \tag{A1}\\
& r=\frac{1}{27}-\frac{1}{8}(2)^{2} \\
& r=-\frac{25}{54} \tag{A1}\\
& \text { Negative \& fractional indices (M1) } \\
& \text { Extended binomial theorem (M1) } \\
& \text { Compare coefficient of } x^{2} \text { (M1) }
\end{align*}
$$

(b) Find the restriction on x such that this expansion is valid.

This expansion is valid when $-1<p x<1$ and
$-1<\frac{x}{3}<1$.
Compound inequality (M1)
$\therefore-1<2 x<1$ and $-1<\frac{x}{3}<1$
$-\frac{1}{2}<x<\frac{1}{2}$ and $-3<x<3$
$\therefore-\frac{1}{2}<x<\frac{1}{2}$

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Exercise 1.8

The binomial expansion of $\sqrt{4-x}-\frac{1}{1+p x}, p \in \mathbb{R}^{+}$, in ascending powers of x as far as the term in x^{2}, is $q+r x-\frac{65}{64} x^{2}, q, r \in \mathbb{R}$.
(a) Find the values of p, q and r.
(b) Find the restriction on x such that this expansion is valid.

Example 1.9

Consider the expansion of $x^{3}\left(2+x^{2}\right)^{n}, n \in \mathbb{Z}^{+}$. The coefficient of x^{5} is 1024 .
(a) Find n.

The general term
$=x^{3} \cdot C_{r}^{n}(2)^{n-r}\left(x^{2}\right)^{r} \quad C_{r}^{n} a^{n-r} b^{r}$ (M1)
$=x^{3} \cdot C_{r}^{n} 2^{n-r} x^{2 r}$
$=C_{r}^{n} 2^{n-r} x^{3+2 r} \quad$ Term in $x^{3+2 r}(\mathrm{~A} 1)$
Consider the term in x^{5}.
$\therefore 3+2 r=5$
Correct equation (A1)
$2 r=2$
$r=1$
$r=1(\mathrm{~A} 1)$
The coefficient of x^{5} is 1024
$\therefore C_{1}^{n} 2^{n-1}=1024$
Correct equation (A1)
$n \cdot 2^{n-1}=1024$
$n \cdot 2^{n-1}-1024=0$
By considering the graph of $y=n \cdot 2^{n-1}-1024$, the horizontal intercept is 8 .
$\therefore n=8$
(b) Hence, find the coefficient of x^{7}.
$x^{3}\left(2+x^{2}\right)^{8}$
$=x^{3}\left[\cdots+C_{2}^{8} 2^{8-2}\left(x^{2}\right)^{2}+\cdots\right]$
$=x^{3}\left[\cdots+1792 x^{4}+\cdots\right]$
$=\cdots+1792 x^{7}+\cdots$
Thus, the coefficient of x^{7} is 1792 .

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Exercise 1.9

Consider the expansion of $\frac{\left(1+x^{3}\right)^{n}}{2 x^{2}}, n \in \mathbb{Z}^{+}$. The coefficient of x^{4} is 3 .
(a) Find n.
(b) Hence, find the coefficient of x^{7}.

5 frost madiantace

Important Notes

Identity of x : The equivalence of two expressions on two sides of the identity sign \equiv, for all values of x

Useful identities and expressions for proofs:

1. $(a+b)^{2} \equiv a^{2}+2 a b+b^{2}$
2. $(a-b)^{2} \equiv a^{2}-2 a b+b^{2}$
3. $(a+b)(a-b) \equiv a^{2}-b^{2}$
4. $x \& x+1$: Two consecutive integers, where $x \in \mathbb{Z}$
5. $2 x+1 \& 2 x+3$: Two consecutive odd numbers, where $x \in \mathbb{Z}$
6. $2 x \& 2 x+2$: Two consecutive even numbers, where $x \in \mathbb{Z}$
7. $a N$: A multiple of a, where $a, N \in \mathbb{Z}$

Proof by counter example: Use an example to disprove a statement
Steps of proving that a statement is true by contradiction:

1. Assume that the opposite of the statement is true
2. Continue the proof until the new finding contradicts with some facts/assumptions
3. Conclude that the statement is true

Example 1.10

(a) Show that $(5 n)^{2}+(5 n+5)^{2}=50 n^{2}+50 n+25, n \in \mathbb{Z}$.
L.H.S.
$=(5 n)^{2}+(5 n+5)^{2}$
Starts from L.H.S. (M1)
$=25 n^{2}+25 n^{2}+50 n+25$
$(a+b)^{2} \equiv a^{2}+2 a b+b^{2}(\mathrm{~A} 1)$
$=50 n^{2}+50 n+25$
$=$ R.H.S.
$\therefore(5 n)^{2}+(5 n+5)^{2}=50 n^{2}+50 n+25$
(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive multiples of 5 is odd.
$5 n$ and $5 n+5$ are consecutive multiples of 5 . Consecutive multiples (R1)
$(5 n)^{2}+(5 n+5)^{2}=50 n^{2}+50 n+25$
Also, $50 n^{2}+50 n+25$ is an odd integer.
Proved in (a) (A1)

Thus, the sum of the squares of any two consecutive multiples of 5 is odd.
$50 n^{2}+50 n$ is even (R1)

Exercise 1.10

(a) Show that $(3 n)^{2}+(3 n+3)^{2}=18 n^{2}+18 n+9, n \in \mathbb{Z}$.
(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive multiples of 3 is divisible by 9 .

Example 1.11

(a) By using a counter example, show that $(m+n)^{3}<m^{3}+n^{3}$ is not always true, $m, n \in \mathbb{R}$.

Let $m=1$ and $n=2$.
Example of m \& n (A1)
$(m+n)^{3}$
$=(1+2)^{3}$
$=27$
$m^{3}+n^{3}$
$=1^{3}+2^{3} \quad$ Substitution (M1)
$=9$
$\therefore(m+n)^{3}>m^{3}+n^{3}$
Thus, $(m+n)^{3}<m^{3}+n^{3}$ is not always true. (AG)
(b) Prove by contradiction that $m^{2}+12 n+17 \neq 0, m, n \in \mathbb{Z}$.

Assume that $m^{2}+12 n+17=0$ for some m,
$n \in \mathbb{Z}$.
Assumption (M1)
$m^{2}=-12 n-17$
$m^{2}=-12 n-18+1$
$m^{2}=2(-6 n-9)+1$
Thus, m^{2} is odd.
$\therefore m$ is also odd.

$$
m^{2} \& m \text { are odd (R1) }
$$

Let $m=2 k+1, k \in \mathbb{Z}$.
$m=2 k+1$ (M1)
$(2 k+1)^{2}=-12 n-17$
$4 k^{2}+4 k+1=-12 n-17$
$(a+b)^{2}=a^{2}+2 a b+b^{2}(\mathrm{M} 1)$
$4 k^{2}+4 k=-12 n-18$
$2 k^{2}+2 k=-6 n-9$
$2 k^{2}+2 k=-6 n-10+1$
$2\left(k^{2}+k\right)=2(-3 n-15)+1$
$2 k_{1}=2 k_{2}+1(\mathrm{~A} 1)$
As the right hand side $2(-3 n-15)+1$ is odd, the
left hand side $2\left(k^{2}+k\right)$ is also odd, which
contradicts with the fact that $2\left(k^{2}+k\right)$ is even. Contradiction (R1)
Thus, $m^{2}+12 n+17 \neq 0, m, n \in \mathbb{Z}$.

Exercise 1.11
(a) By using a counter example, show that $|p+q|>|p|+|q|$ is not always true, where $p, q \in \mathbb{R}$.
(b) Prove by contradiction that the equation $4 x^{3}-12 x-17=0$ has no integer roots.

Steps of proving a statement is true by mathematical induction:

1. Define $P(n)$ to be the statement to be proved
2. Prove that $P(n)$ is true when $n=1$
3. Assume that $P(n)$ is true when $n=k$
4. Prove that $P(n)$ is true when $n=k+1$
5. Conclude that $P(n)$ is true for all the values of n in the domain

Useful identities and expressions for proofs:

1. $(a+b)^{2} \equiv a^{2}+2 a b+b^{2}$
2. $(a-b)^{2} \equiv a^{2}-2 a b+b^{2}$
3. $(a+b)(a-b) \equiv a^{2}-b^{2}$
4. $\quad \sum_{r=1}^{n} u_{r}=u_{1}+u_{2}+u_{3}+\cdots+u_{n-1}+u_{n}$: Summation sign
5. $\quad a N$: A multiple of a, where $a, N \in \mathbb{Z}$

Example 1.12

Prove by mathematical induction that $\sum_{r=1}^{n} r(r+2)=\frac{n(n+1)(2 n+7)}{6}, n \in \mathbb{Z}^{+}$.

Let $P(n): \sum_{r=1}^{n} r(r+2)=\frac{n(n+1)(2 n+7)}{6}$
When $n=1$,
L.H.S.
$=\sum_{r=1}^{1} r(r+2)$
$=3$
R.H.S.
$=\frac{1(1+1)(2(1)+7)}{6}$
$=3$
L.H.S. $=$ R.H.S.

Thus, the statement is true when $n=1$.
Assume that the statement is true when $n=k$.
$\sum_{r=1}^{k} r(r+2)=\frac{k(k+1)(2 k+7)}{6}$
When $n=k+1$,
$\sum_{r=1}^{k+1} r(r+2)$
$=\sum_{r=1}^{k} r(r+2)+(k+1)(k+1+2)$
$=\frac{k(k+1)(2 k+7)}{6}+\frac{6(k+1)(k+3)}{6}$
$=\frac{k+1}{6}[k(2 k+7)+6(k+3)]$
$=\frac{k+1}{6}\left(2 k^{2}+13 k+18\right)$
$=\frac{(k+1)(k+2)(2 k+9)}{6}$
$=\frac{(k+1)((k+1)+1)(2(k+1)+7)}{6}$
Thus, the statement is true when $n=k+1$.
Therefore, the statement is true for all $n \in \mathbb{Z}^{+}$.

Exercise 1.12

Prove by mathematical induction that $\frac{0}{1!}+\frac{1}{2!}+\frac{2}{3!}+\cdots+\frac{n-1}{n!}=1-\frac{1}{n!}, n \in \mathbb{Z}^{+}$.
[6]

Example 1.13

Prove by mathematical induction that $18^{n}-1$ is divisible by $17, n \in \mathbb{Z}^{+}$.

Let $P(n): 18^{n}-1$ is divisible by 17
When $n=1$,
$18^{1}-1$
$=17$
$=17(1)$ which is divisible by 17
Thus, the statement is true when $n=1$.
Assume that the statement is true when $n=k$.
Case when $n=1$ (R1)
$18^{k}-1=17 M, M \in \mathbb{Z}$
When $n=k+1$,
$18^{k+1}-1$
$=18 \cdot 18^{k}-1 \quad 18^{k+1}=18^{k} \cdot 18^{1}(\mathrm{M} 1)$
$=18(17 M+1)-1$
$=306 M+18-1$
$=306 M+17$
$=17(18 M+1)$ which is divisible by 17
Assumption (M1)

Thus, the statement is true when $n=k+1$.
Therefore, the statement is true for all $n \in \mathbb{Z}^{+}$.
Apply the assumption (A1)
$17(18 M+1)(\mathrm{A} 1)$

Exercise 1.13

Prove by mathematical induction that $3^{2 n+1}+1$ is divisible by $4, n \in \mathbb{Z}^{+}$.

Important Notes

Common systems of equations:

1. $\left\{\begin{array}{l}a x+b y=c \\ d x+e y=f\end{array}: 2 \times 2\right.$ system, $a, b, c, d, e, f \in \mathbb{R}$
2. $\left\{\begin{array}{l}a x+b y+c z=d \\ e x+f y+g z=h: 3 \times 3 \\ i x+j y+k z=l\end{array}\right.$ system, a, $b, c, d, e, f, g, h, i, j, k, l \in \mathbb{R}$

Row operations of a system with row R_{i} :

1. Multiply the constant k to the row $R_{i}\left(k R_{i}\right)$
2. Add the row R_{i} to the row $R_{j}\left(R_{i}+R_{j}\right)$
3. Add the multiple of the row R_{i} to the row $R_{j}\left(k R_{i}+R_{j}\right)$

Number of solutions of a system with the last row $a z=b$ after row operation:

1. The system has a unique solution if $a \neq 0$
2. The system has no solution if $a=0$ and $b \neq 0$
3. The system has infinite number of solutions if $a=0$ and $b=0$

Notes on GDC		
TEXAS TI-84 Plus CE 2nd x^{-1} \rightarrow EDIT to input the coefficient matrix \rightarrow MATH \rightarrow rref(to perform row operations for the coefficient matrix	TEXAS TI-Nspire CX templates \rightarrow Matrix to input the coefficient matrix menu \rightarrow Matrix \& Vector \rightarrow Reduced Row-Echelon Form to perform row operations for the coefficient matrix	CASIO fx-CG50 F3 to input the coefficient matrix OPTN \rightarrow F2 \rightarrow F6 \rightarrow F5 to perform row operations for the coefficient matrix

Example 1.14

Consider the following system of equations where $a, b \in \mathbb{R}$:

$$
\begin{aligned}
& x-7 y+2 z=-3 \\
& 3 x+12 y-5 z=13 \\
& -4 x-5 y+a z=b
\end{aligned}
$$

(a) Find the conditions of a and b for which
(i) the system has a unique solution;

$$
\begin{align*}
& \left\{\begin{array}{l}
x-7 y+2 z=-3 \\
3 x+12 y-5 z=13 \\
-4 x-5 y+a z=b
\end{array}\right. \tag{4}\\
& \rightarrow\left\{\begin{array}{cc}
x-7 y+2 z=-3 \\
33 y-11 z=22 & \left(R_{2}-3 R_{1}\right. \\
-33 y+(a+8) z=b-12
\end{array} \& R_{3}+4 R_{1}\right)
\end{aligned} \quad \text { Row operations (M1)(A1) } \quad \begin{aligned}
& \rightarrow \begin{cases}x-7 y+2 z=-3 \\
33 y-11 z=22\left(R_{3}+R_{2}\right) \\
(a-3) z=b+10 & (a-3) z=b+10 \\
\text { (A1) }\end{cases}
\end{align*}
$$

Thus, the system has a unique solution
when $a-3 \neq 0$ and $b+10 \in \mathbb{R}$.
$\therefore a \neq 3$ and $b \in \mathbb{R}$
(ii) the system has no solutions;

The system has no solutions when

$$
\begin{equation*}
a-3=0 \text { and } b+10 \neq 0 . \tag{A1}
\end{equation*}
$$

$\therefore a=3$ and $b \neq-10$
(iii) the system has infinite number of solutions.

The system has infinite number of solutions when $a-3=0$ and $b+10=0$.
$\therefore a=3$ and $b=-10$
(b) Find the solution of the system of equations when $a=4$ and $b=0$.

$$
\begin{align*}
& \left\{\begin{array}{c}
x-7 y+2 z=-3 \\
33 y-11 z=22 \\
(4-3) z=0+10
\end{array}\right. \\
& \begin{array}{l}
z=10 \\
33 y-11(10)=22 \\
33 y=132
\end{array} \tag{A1}\\
& y=4 \\
& x-7(4)+2(10)=-3 \\
& x=5 \tag{A1}
\end{align*}
$$

Exercise 1.14

Consider the following system of equations where $a, b \in \mathbb{R}$:

$$
\begin{aligned}
& x+3 y-2 z=3 \\
& -2 x-y+z=-1 \\
& -x+2 y+a z=b
\end{aligned}
$$

(a) Find the conditions of a and b for which
(i) the system has a unique solution;
(ii) the system has no solutions;
(iii) the system has infinite number of solutions.
(b) Find the solution of the system of equations when $a=3$ and $b=6$.

Important Notes

Properties of factorials, combination coefficients and permutation coefficients:

1. $n!=n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot 3 \cdot 2 \cdot 1: n$ factorial
2. $0!=1$
3. $\quad C_{r}^{n}=\frac{n!}{r!(n-r)!}$: Combination coefficient that represents the number of ways to select r objects from n different objects without regarding the order of the arrangement
4.

$C_{r}^{n}=C_{n-r}^{n}$ for $0 \leq r \leq n, r, n \in \mathbb{Z}^{+}$
5. $\quad P_{r}^{n}=\frac{n!}{(n-r)!}$: Permutation coefficient that represents the number of ways to select r objects from n different objects with regarding the order of the arrangement
6. $\quad P_{n}^{n}=n$! for $0 \leq r=n, r, n \in \mathbb{Z}^{+}$

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Example 1.15

Two boys and five girls are standing in a straight line. Find the number of different arrangements if two boys
(a) must stand with each other;

The number of different arrangements
$=2!\times 6$!
$2!(\mathrm{A} 1) \& 6!(\mathrm{A} 1)$
$=1440$
(b) must not stand with each other;

The number of different arrangements
$=7$! -1440
Complementary case (A1)
$=3600$
(c) must stand with each other and both of them stand on either end.

The number of different arrangements
$=2!\times 5!\times 2$
21×5 ! (A1) \& two cases (A1)
$=480$

Exercise 1.15

In an interview, four male interviewees and six female interviewees are asked to sit on a row of ten seats outside the interview room. Find the number of ways if
(a) the interviewees of the same gender must sit together;
(b) male interviewees must sit together;
(c) male interviewees must not sit together.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Example 1.16

In order to form a team to join a debate competition, a team of four is to be selected from a group of six boys and six girls from a debate club.
(a) Find the number of different possible teams that could be selected.

The number of different possible teams
$=C_{4}^{6+6}$
$=495$
(b) Find the number of different teams that could be selected if the team includes
(i) one boy and three girls;

The number of different possible teams
$=C_{1}^{6} \times C_{3}^{6}$
$=120$
C_{1}^{6} or $C_{3}^{6}(\mathrm{~A} 1)$
(A1)
(ii) at most two boys.

The number of different possible teams
$=C_{0}^{6} \times C_{4}^{6}+C_{1}^{6} \times C_{3}^{6}+C_{2}^{6} \times C_{2}^{6}$
$=360$

Three cases (A1)
(A1)

Exercise 1.16

From a group of eight male students and two female students, five students are selected to form a group.
(a) Determine how many possible groups can be formed.
(b) Determine how many groups can be formed consisting of
(i) three male students and two female students;
(ii) at least one male student.

Important Notes

Terminologies of complex numbers:

1. $i=\sqrt{-1}$: Imaginary unit
2. $z=a+b \mathrm{i}$: Complex number in Cartesian form
3. $a=\operatorname{Re}(z)$: Real part of $z=a+b \mathrm{i}$
4. $b=\operatorname{Im}(z)$: Imaginary part of $z=a+b \mathrm{i}$
5. $z^{*}=a-b \mathrm{i}$: Conjugate of $z=a+b \mathrm{i}$
6. $|z|=\sqrt{a^{2}+b^{2}}$: Modulus of $z=a+b \mathrm{i}$
7. $\arg (z)=\arctan \frac{b}{a}$: Argument of $z=a+b \mathrm{i}$

Properties of i for $N \in \mathbb{Z}$:

1. $\quad i=i^{5}=i^{9}=\cdots=i^{4 N+1}=i$
2. $i^{2}=i^{6}=i^{10}=\cdots=i^{4 N+2}=-1$
3. $i^{3}=i^{7}=i^{11}=\cdots=i^{4 N+3}=-i$
4. $\quad i^{4}=i^{8}=i^{12}=\cdots=i^{4 N}=1$

Properties of Argand diagram:

1. Real axis: Horizontal axis
2. Imaginary axis: Vertical axis
3. $r=|z|=\sqrt{a^{2}+b^{2}}$: Modulus of $z=a+b \mathrm{i}$
4. $\quad \theta=\arg (z)=\arctan \frac{b}{a}$: Argument of $z=a+b \mathrm{i}$

Forms of complex numbers:

1. $z=a+b \mathrm{i}$: Cartesian form
2. $z=r(\cos \theta+\mathrm{i} \sin \theta)=r \operatorname{cis} \theta$: Modulus-argument (polar) form
3. $z=r e^{\mathrm{i} \theta}$: Euler (exponential) form

Properties of moduli and arguments of complex numbers z_{1} and z_{2} :

1. $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
2. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
3. $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$
4. $\quad \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}$
5. $\quad \arg \left(z_{1}{ }^{n}\right)=n \arg z_{1}$

Applications to polynomials and useful expressions:

1. If $z=a+b \mathrm{i}$ is a root of the polynomial equation $p(z)=0$, then $z^{*}=a-b \mathrm{i}$ is also a root of $p(z)=0$
2. $z z^{*}=(a+b \mathrm{i})(a-b \mathrm{i})=a^{2}+b^{2}$

Roots of complex numbers and De Moivre's theorem:

1. $z=r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2 k \pi}{n}\right), k=0,1,2, \cdots, n-1: n$ distinct complex roots of the equation $z^{n}=r \operatorname{cis} \theta$
2. $(r \operatorname{cis} \theta)^{n}=r^{n} \operatorname{cis} n \theta \&\left(r \mathrm{e}^{\theta \mathrm{i}}\right)^{n}=r^{n} \mathrm{e}^{n \theta \mathrm{i}}$: De Moivre's theorem

Notes on GDC		
TEXAS TI-84 Plus CE mode $\rightarrow \mathrm{re}^{\wedge}\left(\theta_{\mathrm{i}}\right)$ on the $8^{\text {th }}$ row to express a complex number in its Euler form to find its modulus and argument $\rightarrow a+b i$ on the $8^{\text {th }}$ row to express a complex number in its Cartesian form to find its real part and imaginary part	TEXAS TI-Nspire CX menu \rightarrow Number \rightarrow Complex Number Tools \rightarrow Convert to Polar to express a complex number in its Euler form to find its modulus and argument \rightarrow Convert to Rectangular to express a complex number in its Cartesian form to find its real part and imaginary part	CASIO fx-CG50 SHIFT \rightarrow MENU \rightarrow F3 on the row Complex Mode to express a complex number in its Euler form to find its modulus and argument \rightarrow F2 on the row Complex Mode to express a complex number in its Cartesian form to find its real part and imaginary part

Example 1.17

Three of the roots of the equation $z^{4}-13 z^{3}+59 z^{2}-117 z+k=0, z \in \mathbb{C}, k \in \mathbb{R}$ are $\alpha, 2 \alpha$ and $2-\mathrm{i}, \alpha \in \mathbb{R}$.
(a) Using the sum of all the roots of the equation to find α.
$2-i$ is one of the roots
$\therefore 2+i$ is also one of the roots
Sum of roots $=-\frac{-13}{1}$
Conjugate (A1)
$\therefore \alpha+2 \alpha+(2-i)+(2+i)=-\frac{-13}{1}$
$-\frac{a_{3}}{a_{4}}$ (M1)
$3 \alpha+4=13$
$3 \alpha=9$
$\alpha=3$
Correct equation (A1)
(b) Hence, find k.

$$
\begin{align*}
& \text { Product of roots }=(-1)^{4} \frac{k}{1} \\
& \therefore(3)(6)(2-\mathrm{i})(2+\mathrm{i})=(-1)^{4} \frac{k}{1} \\
& 18\left(2^{2}-\mathrm{i}^{2}\right)=k \\
& 18(4-(-1))=k \\
& k=90 \tag{A1}
\end{align*}
$$

$$
(-1)^{4} \frac{a_{0}}{a_{4}}(\mathrm{M} 1)
$$

Correct equation (A1)

Exercise 1.17

Two of the roots of the equation $z^{4}+k z^{3}+8 z^{2}+80 z+400=0, z \in \mathbb{C}, k \in \mathbb{R}$ are $\alpha+2 \mathrm{i}$ and $2-4 \mathrm{i}, \alpha \in \mathbb{R}, \alpha<0$.
(a) Using the product of all the roots of the equation to find α.
(b) Hence, find k.

Example 1.18

(a) (i) Use the binomial theorem to expand $(\cos \theta+\mathrm{i} \sin \theta)^{3}$.

$$
\begin{align*}
& (\cos \theta+\mathrm{i} \sin \theta)^{3} \\
& =\cos ^{3} \theta+C_{1}^{3} \cos ^{2} \theta(\mathrm{i} \sin \theta)^{1} \\
& +C_{2}^{3} \cos \theta(\mathrm{i} \sin \theta)^{2}+(\mathrm{i} \sin \theta)^{3} \\
& =\cos ^{3} \theta+3 \mathrm{i} \cos ^{2} \theta \sin \theta \\
& +3 \cos \theta\left(\mathrm{i}^{2} \sin ^{2} \theta\right)+\mathrm{i}^{3} \sin ^{3} \theta \\
& =\cos ^{3} \theta+3 \mathrm{i} \cos ^{2} \theta \sin \theta \tag{A1}\\
& -3 \cos \theta \sin ^{2} \theta-\mathrm{i} \sin ^{3} \theta
\end{align*}
$$

(ii) Hence, use De Moivre's theorem to show that

$$
\begin{align*}
& \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \text {. } \\
& (\cos \theta+\mathrm{i} \sin \theta)^{3}=\cos ^{3} \theta \tag{3}\\
& +3 \mathrm{i} \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-\mathrm{i} \sin ^{3} \theta \\
& \cos 3 \theta+\mathrm{i} \sin 3 \theta=\cos ^{3} \theta \\
& +3 \mathrm{i} \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-\mathrm{i} \sin ^{3} \theta \\
& \therefore \mathrm{i} \sin 3 \theta=3 \mathrm{i} \cos ^{2} \theta \sin \theta-\mathrm{i} \sin ^{3} \theta \\
& \sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta \\
& \sin 3 \theta=3\left(1-\sin ^{2} \theta\right) \sin \theta-\sin ^{3} \theta \quad \cos ^{2} \theta=1-\sin ^{2} \theta \text { (A1) } \\
& \sin 3 \theta=3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta \\
& \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \tag{AG}\\
& \text { De Moivre's theorem (M1) } \\
& \text { Compare imaginary parts (M1) } \\
& \cos ^{2} \theta=1-\sin ^{2} \theta(\mathrm{~A} 1)
\end{align*}
$$

It is given that $\cos 3 \theta=\alpha \cos ^{3} \theta-3 \cos \theta, \alpha \in \mathbb{R}$.
(iii) Find α.

$$
\begin{aligned}
& \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& \cos 3 \theta=\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
& \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \\
& \therefore \alpha=4
\end{aligned}
$$

Let $z=r(\cos \beta+\mathrm{i} \sin \beta), \beta \in \mathbb{R}$, be the solution of $z^{3}=\cos \left(\frac{\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right)$ which has the smallest positive argument.
(b) Find the values of r and β.

$$
\begin{align*}
& z^{3}=\cos \left(\frac{\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right) \\
& z=\cos \left(\frac{\frac{\pi}{4}+2 \pi k}{3}\right)+\mathrm{i} \sin \left(\frac{\frac{\pi}{4}+2 \pi k}{3}\right)(k=0,1,2) \quad 3 \text { complex roots (M1) } \\
& z=\cos \left(\frac{\pi}{12}+\frac{2 \pi k}{3}\right)+\mathrm{i} \sin \left(\frac{\pi}{12}+\frac{2 \pi k}{3}\right) \\
& \therefore r=1 \tag{A1}\\
& \beta=\frac{\pi}{12}+\frac{2 \pi(0)}{3} \\
& \beta=\frac{\pi}{12} \tag{A1}
\end{align*}
$$

(c) Hence, show that $8 \sin ^{3}\left(\frac{\pi}{12}\right)-6 \sin \left(\frac{\pi}{12}\right)+\sqrt{2}=0$.
$\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
$\therefore \sin 3\left(\frac{\pi}{12}\right)=3 \sin \left(\frac{\pi}{12}\right)-4 \sin ^{3}\left(\frac{\pi}{12}\right)$

$$
\theta=\frac{\pi}{12}(\mathrm{M} 1)
$$

$\sin \left(\frac{\pi}{4}\right)=3 \sin \left(\frac{\pi}{12}\right)-4 \sin ^{3}\left(\frac{\pi}{12}\right)$
$3\left(\frac{\pi}{12}\right)=\frac{\pi}{4}$ (A1)
$\frac{\sqrt{2}}{2}=3 \sin \left(\frac{\pi}{12}\right)-4 \sin ^{3}\left(\frac{\pi}{12}\right)$
$\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
$4 \sin ^{3}\left(\frac{\pi}{12}\right)-3 \sin \left(\frac{\pi}{12}\right)+\frac{\sqrt{2}}{2}=0$
$8 \sin ^{3}\left(\frac{\pi}{12}\right)-6 \sin \left(\frac{\pi}{12}\right)+\sqrt{2}=0$

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Let $w=R(\cos \lambda+\mathrm{i} \sin \lambda), \lambda \in \mathbb{R}$, be the solution of $(w-2)^{3}=\cos \left(\frac{\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right)$ which has the smallest positive argument.
(d) (i) Describe the geometric relationship between $z=r(\cos \beta+\mathrm{i} \sin \beta)$ and $w=R(\cos \lambda+\mathrm{i} \sin \lambda)$.
$w=R(\cos \lambda+\mathrm{i} \sin \lambda)$ is 2 units on the right of $z=r(\cos \beta+\mathrm{i} \sin \beta)$.
(ii) Show that $\mu=\frac{2 e^{\frac{7 \pi}{12}}+1}{e^{\frac{7 \pi}{12}} \mathrm{i}}$ is a root of $(w-2)^{3}=\cos \left(\frac{\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right)$.

$$
\begin{array}{ll}
(\mu-2)^{3} \tag{3}\\
=\left(\frac{2 e^{\frac{7 \pi}{12} \mathrm{i}}+1}{e^{\frac{7 \pi}{12} \mathrm{i}}}-2\right)^{3} & \text { Substitution (M1) } \\
=\left(2+\frac{1}{e^{\frac{7 \pi}{12} \mathrm{i}}}-2\right)^{3} & \\
=\left(\frac{1}{e^{\frac{7 \pi}{12} \mathrm{i}}}\right)^{3} & \left(e^{\left.\frac{7 \pi}{12}\right)^{3}}=e^{\frac{7 \pi}{4} \mathrm{i}}(\mathrm{~A} 1)\right. \\
=\frac{1}{\frac{7 \pi}{4} \mathrm{i}} & \\
=e^{\frac{7 \pi}{4} \mathrm{i}} & \\
=\cos \left(-\frac{7 \pi}{4}\right)+\mathrm{i} \sin \left(-\frac{7 \pi}{4}\right) & -\frac{7 \pi}{4}+2 \pi=\frac{\pi}{4}(\mathrm{~A} 1)
\end{array}
$$

Thus, $\mu=\frac{2 e^{\frac{7 \pi}{12} \mathrm{i}}+1}{e^{\frac{7 \pi}{12} \mathrm{i}}}$ is a root of
$(w-2)^{3}=\cos \left(\frac{\pi}{4}\right)+\mathrm{i} \sin \left(\frac{\pi}{4}\right)$.

Exercise 1.18
(a) (i) Use the binomial theorem to expand $(\cos \theta+\mathrm{i} \sin \theta)^{4}$.
(ii) Hence, use De Moivre's theorem to show that

$$
\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
$$

It is given that $\sin 4 \theta=4 \sin \theta \cos \theta+\alpha \sin ^{3} \theta \cos \theta, \alpha \in \mathbb{R}$.
(iii) Find α.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Let $z=r(\cos \beta+\mathrm{i} \sin \beta), \beta \in \mathbb{R}$, be the solution of $z^{4}=\mathrm{i}$ which has the smallest positive argument.
(b) Find the values of r and β.
(c) Hence, show that $4 \sin \left(\frac{\pi}{8}\right) \cos \left(\frac{\pi}{8}\right)\left(1-2 \sin ^{2}\left(\frac{\pi}{8}\right)\right)-1=0$.

Let $w=R(\cos \lambda+\mathrm{i} \sin \lambda), \lambda \in \mathbb{R}$, be the solution of $(w+2 \mathrm{i})^{4}=\mathrm{i}$ which has the smallest positive argument.
(d) (i) Describe the geometric relationship between $z=r(\cos \beta+\mathrm{i} \sin \beta)$ and $w=R(\cos \lambda+\mathrm{i} \sin \lambda)$.
(ii) Show that $\mu=\frac{1-2 e^{\frac{11 \pi}{8} \mathrm{i}}}{e^{\frac{11 \pi \pi^{8}}{8}}}$ is a root of $(w+2 \mathrm{i})^{4}=\mathrm{i}$.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Example 1.19

Two complex numbers are defined as $w=27\left(\cos \frac{\pi}{15}-\mathrm{i} \sin \frac{\pi}{15}\right)$ and $z=3\left(\cos \frac{k \pi}{5}+\mathrm{i} \sin \frac{k \pi}{5}\right), k \in \mathbb{Z}^{+}$.
(a) Find the modulus of $w z$.

The modulus of $w z$

$$
\begin{align*}
& =|w||z| \\
& =(27)(3) \\
& =81 \tag{A1}
\end{align*}
$$

$$
|w z|=|w||z|(\mathrm{M} 1)
$$

(b) Find the argument of $w z$, giving the answer in terms of k.
w
$=27\left(\cos \frac{\pi}{15}-\mathrm{i} \sin \frac{\pi}{15}\right)$
$=27\left(\cos \left(-\frac{\pi}{15}\right)+\mathrm{i} \sin \left(-\frac{\pi}{15}\right)\right)$
$\therefore \arg (w)=-\frac{\pi}{15}$
The argument of $w z$
$=\arg (w)+\arg (z)$
$\arg (w z)=\arg (w)+\arg (z)(\mathrm{M} 1)$
$=-\frac{\pi}{15}+\frac{k \pi}{5}$
$=-\frac{\pi}{15}+\frac{3 k \pi}{15}$
$=\frac{(3 k-1) \pi}{15}$
(c) Is it possible for $w z$ to be on the real axis? Explain your answer.
$\arg (w z)$
$=\frac{(3 k-1) \pi}{15}$
As $3 k-1$ is not divisible by 3 nor $15, \frac{(3 k-1) \pi}{15}$
can never be a multiple of π.
Indivisibility (R1)
$\therefore \arg (w z) \neq N \pi, N \in \mathbb{Z}$
Thus, $w z$ can never be on the real axis.

Analysis and Approaches Higher Level for IBDP Mathematics - Algebra

Exercise 1.19

Two complex numbers are defined as $w=\frac{1}{8}\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)$ and $z=\frac{1}{2}\left(\cos \frac{k \pi}{4}-\mathrm{i} \sin \frac{k \pi}{4}\right), k \in \mathbb{Z}^{+}$.
(a) Find the modulus of $w z$.
(b) Find the argument of $w z$, giving the answer in terms of k.
(c) It is given that $w z$ is on the imaginary axis. Find the minimum value of k.

