Formula List of Analysis and Approaches Standard Level for IBDP Mathematics

Intensive Notes by Topics here	IBDP Maths Info. & Exam Tricks here
Exam & GDC Skills Video List here	More Mock Papers & Marking Service here

Standard Form

✓ Standard Form:

A number in the form $(\pm)a\times10^k$, where $1\leq a<10$ and k is an integer

2

Quadratic Functions

✓ General form $y = ax^2 + bx + c$, where $a \neq 0$:

a > 0	The graph opens upward		
a < 0	The graph opens downward		
С	y -intercept		
$h = -\frac{b}{2a}$	x -coordinate of the vertex		
$k = ah^2 + bh + c$	y -coordinate of the vertex		
$\kappa - \alpha n + bn + c$	Extreme value of y		
x = h	Equation of the axis of symmetry		

- ✓ Other forms:
 - 1. $y = a(x-h)^2 + k$: Vertex form
 - 2. y = a(x-p)(x-q): Factored form with x -intercepts p and q
- ✓ Solving the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$:
 - 1. Factorization by cross method
 - 2. $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$: Quadratic Formula
 - 3. Method of completing the square

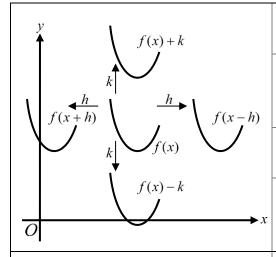
✓ The discriminant $\Delta = b^2 - 4ac$ of $ax^2 + bx + c = 0$:

Δ>0	The quadratic equation has	
	two distinct real roots	
	The quadratic equation has	
$\Delta = 0$	one double real root	
A . O	The quadratic equation has	
$\Delta < 0$	no real root	

✓ The *x*-intercepts of the quadratic function $y = ax^2 + bx + c$ are the roots of the corresponding quadratic equation $ax^2 + bx + c = 0$

- \checkmark The function y = f(x):
 - 1. f(a): Functional value when x = a
 - 2. Set of values of x: Domain
 - 3. Set of values of y: Range
- \checkmark $f \circ g(x) = f(g(x))$: Composite function when g(x) is substituted into f(x)
- ✓ Steps of finding the inverse function $y = f^{-1}(x)$ of f(x):
 - 1. Start from expressing y in terms of x
 - 2. Interchange x and y
 - 3. Make y the subject in terms of x
- ✓ Properties of $y = f^{-1}(x)$:
 - 1. $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
 - 2. The graph of $y = f^{-1}(x)$ is the reflection of the graph of y = f(x) about y = x

✓ Summary of transformations:



kf(x)

 $f(x) \rightarrow f(x) + k$:

Translate upward by k units

 $f(x) \rightarrow \overline{f(x)-k}$:

Translate downward by

k units

 $f(x) \rightarrow f(x+h)$:

Translate to the left by h units

 $f(x) \rightarrow f(x-h)$:

Translate to the right by

h units

 $f(x) \rightarrow kf(x)$:

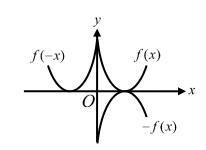
Vertical stretch of

scale factor k

 $f(x) \rightarrow f(kx)$:

Horizontal compression of

scale factor k



 $f(x) \rightarrow -f(x)$:

Reflection about the x-axis

 $f(x) \rightarrow f(-x)$:

Reflection about the y-axis

✓ Properties of rational function $y = \frac{ax+b}{cx+d}$:

1.
$$y = \frac{1}{x}$$
: Reciprocal function

2.
$$y = \frac{a}{c}$$
: Horizontal asymptote

3.
$$x = -\frac{d}{c}$$
: Vertical asymptote

Exponential and Logarithmic Functions

- \checkmark $y = a^x$: Exponential function of base a ≠ 1
- ✓ Methods of solving an exponential equation $a^x = b$:
 - 1. Change b into a^y such that $a^x = a^y \Rightarrow x = y$
 - 2. Take logarithm for both sides
- ✓ $y = \log_a x$: Logarithmic function of base a > 0
- ✓ $y = \log x = \log_{10} x$: Common Logarithmic function
- ✓ $y = \ln x = \log_e x$: Natural Logarithmic function, where e = 2.71828... is an exponential number
- ✓ Laws of logarithm, where a, b, c, p, q, x>0:
 - 1. $x = a^y \Leftrightarrow y = \log_a x$
 - 2. $\log_a 1 = 0$
 - $3. \qquad \log_a a = 1$
 - 4. $\log_a p + \log_a q = \log_a pq$
 - 5. $\log_a p \log_a q = \log_a \frac{p}{q}$
 - $6. \qquad \log_a p^n = n \log_a p$
 - $7. \qquad \log_b a = \frac{\log_c a}{\log_c b}$
- ✓ Properties of the graphs of $y = a^x$:

a > 1	0 < a < 1	
y -inter	cept=1	
y increases as x increases	y decreases as x increases	
y tends to zero as x tends to	y tends to zero as x tends to	
negative infinity	positive infinity	
Horizontal asymptote: $y = 0$		

✓ Properties of the graphs of $y = \log_a x$:

a>1	0 < a < 1	
x -inter	cept=1	
y increases as x increases	y decreases as x increases	
x tends to zero as y tends to	x tends to zero as y tends to	
negative infinity	positive infinity	
Vertical asymptote: $x = 0$		

5

Arithmetic Sequences

- \checkmark Properties of an arithmetic sequence u_n :
 - 1. u_1 : First term
 - 2. $d = u_2 u_1 = u_n u_{n-1}$: Common difference
 - 3. $u_n = u_1 + (n-1)d$: General term (n th term)
 - 4. $S_n = \frac{n}{2} [2u_1 + (n-1)d] = \frac{n}{2} [u_1 + u_n]$: The sum of the first *n* terms
- $\checkmark \qquad \sum_{r=1}^{n} u_r = u_1 + u_2 + u_3 + \dots + u_{n-1} + u_n$: Summation sign

6

Geometric Sequences

- ✓ Properties of a geometric sequence u_n :
 - 1. u_1 : First term
 - 2. $r = u_2 \div u_1 = u_n \div u_{n-1}$: Common ratio
 - 3. $u_n = u_1 \times r^{n-1}$: General term (*n* th term)
 - 4. $S_n = \frac{u_1(1-r^n)}{1-r}$: The sum of the first n terms
 - 5. $S_{\infty} = \frac{u_1}{1-r}$: The sum to infinity, given that -1 < r < 1

Binomial Theorem

 \checkmark Properties of the *n* factorial *n*!:

1.
$$n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$$

2.
$$0!=1$$

3.
$$n! = n \times (n-1)!$$

✓ Properties of the combination coefficient $\binom{n}{r}$:

1.
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

$$2. \qquad \binom{n}{0} = \binom{n}{n} = 1$$

3.
$$\binom{n}{1} = \binom{n}{n-1} = n$$

4.
$$\binom{n}{r} = \binom{n}{n-r} = \frac{n(n-1)\cdots(n-r+1)}{r!}$$

✓ The binomial theorem:

$$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n-1}a^{1}b^{n-1} + \binom{n}{n}a^{0}b^{n}$$

$$=\sum_{r=0}^n \binom{n}{r} a^{n-r} b^r \text{ , where the } (r+1) \text{ -th term} = \binom{n}{r} a^{n-r} b^r$$

Proofs and Identities

✓ Identity of x: The equivalence of two expressions for all values of x \equiv : Identity sign

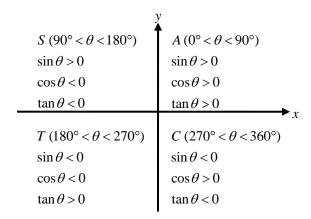
Coordinate Geometry

- ✓ Consider the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a x y plane:
 - 1. $m = \frac{y_2 y_1}{x_2 x_1}$: Slope of *PQ*
 - 2. $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$: Distance between *P* and *Q*
 - 3. $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$: The mid-point of PQ
- \checkmark Forms of straight lines with slope m and y -intercept c:
 - 1. y = mx + c: Slope-intercept form
 - 2. Ax + By + C = 0: General form
- \checkmark Ways to find the x-intercept and the y-intercept of a line:
 - 1. Substitute y = 0 and make x the subject to find the x-intercept
 - 2. Substitute x = 0 and make y the subject to find the y-intercept

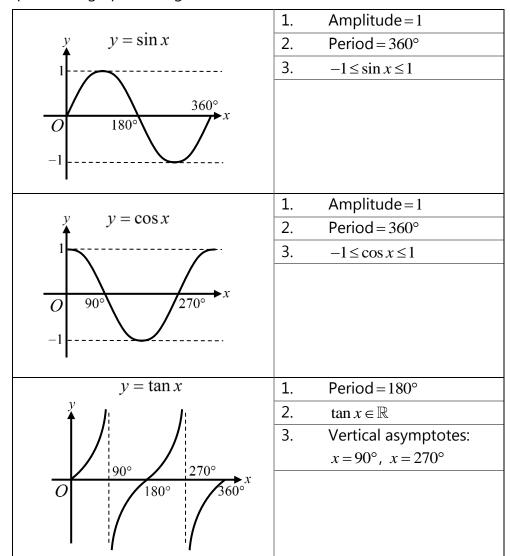
Trigonometry

- ✓ Trigonometric identities:
 - 1. $\tan \theta = \frac{\sin \theta}{\cos \theta}$
 - 2. $\sin^2\theta + \cos^2\theta \equiv 1$
- ✓ Double angle formula:
 - 1. $\sin 2\theta = 2\sin \theta \cos \theta$
 - 2. $\cos 2\theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta = \cos^2 \theta \sin^2 \theta$

✓ ASTC diagram



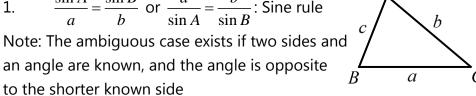
✓ Properties of graphs of trigonometric functions:



- Properties of a general trigonometric function $y = A \sin B(x C) + D$:
 - $A = \frac{y_{\text{max}} y_{\text{min}}}{2}$: Amplitude
 - 2. $B = \frac{2\pi}{\text{Period}}$
 - $D = \frac{y_{\text{max}} + y_{\text{min}}}{2}$
 - C can be found by substitution of a point on the graph 4.

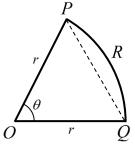
2-D Trigonometry

- Consider a triangle ABC:
 - $\frac{\sin A}{a} = \frac{\sin B}{b}$ or $\frac{a}{\sin A} = \frac{b}{\sin B}$: Sine rule



2.
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$: Cosine rule

- 3. $\frac{1}{2}ab\sin C$: Area of the triangle *ABC*
- $\frac{x^{\circ}}{180^{\circ}} = \frac{y \text{ rad}}{\pi \text{ rad}}$: Method of conversions between degree and radian
- Consider a sector OPRQ with centre O, radius r and $\angle POQ = \theta$ in radian:
 - $r\theta$: Arc length PQ
 - 2. $\frac{1}{2}r^2\theta$: Area of the sector *OPRQ*
 - 3. $\frac{1}{2}r^2(\theta \sin \theta)$: Area of the segment *PRQ*



Areas and Volumes

- \checkmark For a cube of side length l:
 - 1. $6l^2$: Total surface area
 - 2. l^3 : Volume
- \checkmark For a cuboid of side lengths a, b and c:
 - 1. 2(ab+bc+ac): Total surface area
 - 2. *abc*: Volume
- \checkmark For a prism of height h and cross-sectional area A:
 - 1. *Ah*: Volume
- ✓ For a cylinder of height h and radius r:
 - 1. $2\pi r^2 + 2\pi rh$: Total surface area
 - 2. $2\pi rh$: Lateral surface area
 - 3. $\pi r^2 h$: Volume
- \checkmark For a pyramid of height h and base area A:
 - 1. $\frac{1}{3}Ah$: Volume
- ✓ For a circular cone of height h and radius r:
 - 1. $l = \sqrt{r^2 + h^2}$: Slant height
 - 2. $\pi r^2 + \pi r l$: Total surface area
 - 3. πrl : Curved surface area
 - 4. $\frac{1}{3}\pi r^2 h$: Volume
- \checkmark For a sphere of radius r:
 - 1. $4\pi r^2$: Total surface area
 - 2. $\frac{4}{3}\pi r^3$: Volume

- \checkmark For a hemisphere of radius r:
 - 1. $3\pi r^2$: Total surface area
 - 2. $2\pi r^2$: Curved surface area
 - 3. $\frac{2}{3}\pi r^3$: Volume

Differentiation

- ✓ Derivatives of a function y = f(x):
 - 1. $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$: First derivative
 - 2. $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = f''(x)$: Second derivative
 - 3. $\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = f^{(n)}(x) : n \text{ -th derivative}$
- ✓ Rules of differentiation:

$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$	$f(x) = p(x) + q(x) \Rightarrow f'(x) = p'(x) + q'(x)$
$f(x) = \sin x \Rightarrow f'(x) = \cos x$	$f(x) = cp(x) \Rightarrow f'(x) = cp'(x)$
$f(x) = \cos x \Rightarrow f'(x) = -\sin x$	$f(x) = p(q(x)) \Rightarrow f'(x) = p'(q(x)) \cdot q'(x)$
$f(x) = \tan x \Rightarrow f'(x) = \frac{1}{\cos^2 x}$	f(x) = p(x)q(x) $\Rightarrow f'(x) = p'(x)q(x) + p(x)q'(x)$
$f(x) = e^x \Rightarrow f'(x) = e^x$	$f(x) = \frac{p(x)}{q(x)}$
$f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}$	$\Rightarrow f'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{(q(x))^2}$

- ✓ Relationships between graph properties and the derivatives:
 - 1. f'(x) > 0 for $a \le x \le b$: f(x) is increasing in the interval
 - 2. f'(x) < 0 for $a \le x \le b$: f(x) is decreasing in the interval
 - 3. f'(a) = 0: (a, f(a)) is a stationary point of f(x)
 - 4. f'(a) = 0 and f'(x) changes from positive to negative at x = a: (a, f(a)) is a maximum point of f(x)
 - 5. f'(a) = 0 and f'(x) changes from negative to positive at x = a: (a, f(a)) is a minimum point of f(x)
 - 6. f''(a) = 0 and f''(x) changes sign at x = a: (a, f(a)) is a point of inflexion of f(x)

- ✓ Slopes of tangents and normals:
 - 1. f'(a): Slope of tangent at x = a
 - 2. $\frac{-1}{f'(a)}$: Slope of normal at x = a

Applications of Differentiation

- ✓ Equations of tangents and normals:
 - 1. y-f(a) = f'(a)(x-a): Equation of tangent at x = a
 - 2. $y-f(a) = \left(\frac{-1}{f'(a)}\right)(x-a)$: Equation of normal at x = a
- $\checkmark \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\mathrm{d}N}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$: Rate of change of N with respect to the time t
- ✓ Tests for optimization:
 - 1. First derivative test
 - 2. Second derivative test
- ✓ Applications in kinematics:
 - 1. s(t): Displacement with respect to the time t
 - 2. v(t) = s'(t): Velocity
 - 3. a(t) = v'(t): Acceleration

15

Integration

- ✓ Integrals of a function y = f(x):
 - 1. $\int f(x)dx$: Indefinite integral of f(x)
 - 2. $\int_a^b f(x)dx$: Definite integral of f(x) from a to b

✓ Rules of integration:

$\int x^n \mathrm{d}x = \frac{1}{n+1} x^{n+1} + C$	$\int (p'(x) + q'(x))dx = p(x) + q(x) + C$
$\int \cos x \mathrm{d}x = \sin x + C$	$\int cp'(x)\mathrm{d}x = cp(x) + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int_{a}^{b} f'(x) dx = [f(x)]_{a}^{b} = f(b) - f(a)$
$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$	Integration by substitution
$\int e^x \mathrm{d}x = e^x + C$	$\int \frac{1}{x} dx = \ln x + C$

16

Applications of Integration

✓ Areas on x - y plane, between x = a and x = b:

1. $\int_a^b f(x) dx$: Area under the graph of f(x) and above the x-axis

2. $-\int_a^b f(x) dx$: Area under the x-axis and above the graph of f(x)

3. $\int_a^b (f(x) - g(x)) dx$: Area under the graph of f(x) and above the graph of g(x)

✓ Applications in kinematics:

1. a(t): Acceleration with respect to the time t

2. $v(t) = \int a(t) dt$: Velocity

3. $s(t) = \int v(t)dt$: Displacement

4. $d = \int_{t_1}^{t_2} |v(t)| dt$: Total distance travelled between t_1 and t_2

17 Statistics

✓ Relationship between frequencies and cumulative frequencies:

Data	Eroguenev	Data less than	Cumulative
Data	Frequency	or equal to	frequency
10	f_1	10	f_1
20	f_2	20	$f_1 + f_2$
30	f_3	30	$f_1 + f_2 + f_3$

✓ Measures of central tendency for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:

1.
$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
: Mean

2. The datum or the average value of two data at the middle: Median

3. The datum appears the most: Mode

✓ Measures of dispersion for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:

1. $x_n - x_1$: Range

2. Two subgroups A and B can be formed from the data set such that all data of the subgroup A are less than or equal to the median, while all data of the subgroup B are greater than or equal to the median

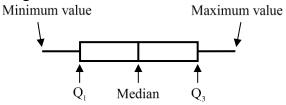
3. $Q_1 = \text{The median of the subgroup A: Lower quartile}$

4. Q_3 = The median of the subgroup B: Upper quartile

5. $Q_3 - Q_1$: Inter-quartile range (IQR)

6.
$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$$
: Standard deviation

✓ Box-and-whisker diagram:

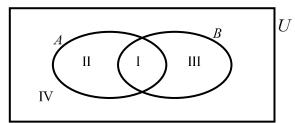


✓ A datum x is defined to be an outlier if $x < Q_1 - 1.5$ IQR or $x > Q_3 + 1.5$ IQR

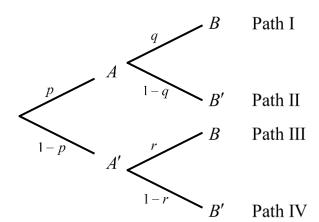
- ✓ Coding of data:
 - 1. Only the mean, the median, the mode and the quartiles will change when each datum of the data set is added or subtracted by a value
 - 2. All measures of central tendency and measures of dispersion will change when each datum of the data set is multiplied or divided by a value

Probability

- ✓ Terminologies:
 - 1. U: Universal set
 - 2. *A*: Event
 - 3. x: Outcome of an event
 - 4. n(U): Total number of elements
 - 5. n(A): Number of elements in A
- ✓ Formulae for probability:
 - 1. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - 2. P(A') = 1 P(A)
 - 3. $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
 - 4. $P(A) = P(A \cap B) + P(A \cap B')$
 - 5. $P(A' \cap B') + P(A \cup B) = 1$
 - 6. $P(A \cup B) = P(A) + P(B)$ and $P(A \cap B) = 0$ if A and B are mutually exclusive
 - 7. $P(A \cap B) = P(A) \cdot P(B)$ and $P(A \mid B) = P(A)$ if A and B are independent
- ✓ Venn diagram:
 - 1. Region I: $A \cap B$
 - 2. Region II: $A \cap B'$
 - 3. Region III: $A' \cap B$
 - 4. Region IV: $(A \cup B)'$



- ✓ Tree diagram:
 - 1. Path I: $P(A \cap B) = pq$
 - 2. Path I + Path III:
 - = P(B)
 - $= P(A \cap B) + P(A' \cap B)$
 - = pq + (1-p)r



Discrete Probability Distributions

 \checkmark Properties of a discrete random variable X:

X	\mathcal{X}_1	x_2	•••	\mathcal{X}_n
P(X = x)	$P(X=x_1)$	$P(X=x_2)$		$P(X=x_n)$

- 1. $P(X = x_1) + P(X = x_2) + \dots + P(X = x_n) = 1$
- 2. $E(X) = x_1 P(X = x_1) + x_2 P(X = x_2) + \dots + x_n P(X = x_n)$: Expected value of X
- 3. E(X) = 0 if a fair game is considered

20

Binomial Distribution

- ✓ Properties of a random variable $X \sim B(n, p)$ following binomial distribution:
 - 1. Only two outcomes from every independent trial (Success and failure)
 - 2. n: Number of trials
 - 3. p: Probability of success
 - 4. X: Number of successes in n trials
- ✓ Formulae for binomial distribution:
 - 1. $P(X=r) = {n \choose r} p^r (1-p)^{n-r} \text{ for } 0 \le r \le n, \ r \in \mathbb{Z}$
 - 2. E(X) = np: Expected value of X
 - 3. Var(X) = np(1-p): Variance of X
 - 4. $\sqrt{np(1-p)}$: Standard deviation of X
 - 5. $P(X \le r) = P(X < r+1) = 1 P(X \ge r+1)$

Normal Distribution

- ✓ Properties of a random variable $X \sim N(\mu, \sigma^2)$ following normal distribution:
 - 1. μ : Mean
 - 2. σ : Standard deviation
 - 3. The mean, the median and the mode are the same
 - 4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
 - 5. $P(X < \mu) = P(X > \mu) = 0.5$
 - 6. The total area under the curve is 1
- ✓ Standardization of a normal variable:
 - 1. $Z \sim N(0, 1^2)$: Standard normal distribution with mean 0 and standard deviation 1
 - 2. $Z = \frac{X \mu}{\sigma}$ for $X \sim N(\mu, \sigma^2)$

22

Bivariate Analysis

✓ Correlations:

	Strong	0.75 < r < 1
Positive	Moderate	0.5 < r < 0.75
	Weak	0 < r < 0.5
N	r = 0	
	Weak	-0.5 < r < 0
Negative	Moderate	-0.75 < r < -0.5
	Strong	-1 < r < -0.75

where r is the correlation coefficient

- ✓ Linear regression:
 - 1. y = ax + b: Regression line of y on x
 - 2. x = ay + b: Regression line of x on y

Notes

