SE Production

Lists of Resources when Revising IBDP Mathematics

Math AA Book 1 Solution		Math AI Book 1 Solution	
	CLICK HERE		CLICK HERE
Math AA Book 2 Solution		Math AI Book 2 Solution	
	CLICK HERE		CLICK HERE
Free Last Minute Formula \& Concept List		IBDP Mathematics Exam Info \& Skills	
	CLICK HERE		CLICK HERE
Math \& GDC Skills Video List		More Mock Papers?	
	CLICK HERE		CLICK HERE

Chapter

Geometric Sequences

SUMMARY POINTs

$\checkmark \quad S_{\infty}=\frac{u_{1}}{1-r}$: The sum to infinity of a geometric sequence u_{n}, given that $-1<r<1$

Solutions of Chapter 3

11
 Paper 1 - Sum to Infinity

Example

The first three terms of a geometric sequence are $u_{1}=800, u_{2}=720$ and $u_{3}=648$.
(a) Find the value of r.
(b) Find the value of S_{6}.
(c) Find the sum to infinity of this sequence.

Solution

(a) $r=\frac{720}{800}$
$r=0.9$
(M1) for valid approach
A1
(b) $\quad S_{6}=\frac{u_{1}\left(1-r^{6}\right)}{1-r}$
$S_{6}=\frac{800\left(1-(0.9)^{6}\right)}{1-0.9}$
(A1) for substitution
$S_{6}=3748.472$
$S_{6}=3750$
A1
(c) $\quad S_{\infty}=\frac{u_{1}}{1-r}$
$S_{\infty}=\frac{800}{1-0.9}$
(A1) for substitution
$S_{\infty}=8000$
A1

Your Practice Set - Applications and Interpretation for IBDP Mathematics

Exercise 11

1. The first three terms of a geometric sequence are $u_{1}=-900, u_{2}=-540$ and $u_{3}=-324$.
(a) Find the value of r.
(b) Find the value of S_{10}.
(c) Find the sum to infinity of this sequence.
2. The first three terms of an infinite geometric sequence are $\ln x^{48}, \ln x^{24}$ and $\ln x^{12}$, where $x>0$.
(a) Find the common ratio of the geometric sequence.
(b) Find u_{6}.
(c) Find the sum to infinity of this sequence.
3. The first three terms of an infinite geometric sequence are $e^{12 x}, e^{8 x}$ and $e^{4 x}$.
(a) Find the common ratio of the geometric sequence.
(b) Find u_{7}.
(c) Find x if the sum to infinity of this sequence is $\frac{e^{96}}{e^{24}-1}$.
4. The first three terms of an infinite geometric sequence are $3^{10 x}, 3^{9 x}$ and $3^{8 x}$.
(a) Find the common ratio of the geometric sequence.
(b) Find a general expression for u_{n}.
(c) Find the sum to infinity if the common ratio is $\frac{1}{3}$, giving the answer in the form $a \times 3^{b}$.

12
 Paper 1 - Condition of Sum to Infinity

Example

The first three terms of an infinite geometric sequence are $-\frac{6}{r},-6,-6 r$, where r is the common ratio. The two possible values of r are $\frac{3}{2}$ and $-\frac{2}{3}$.
(a) State which value of r leads to this sum and justify your answer.
(b) Hence, calculate the sum of the sequence.

Solution

[2]
(a) $\quad r=-\frac{2}{3}$ leads to a finite sum.

A1
As $-1<-\frac{2}{3}<1$.
R1
(b) $u_{1}=-\frac{6}{-\frac{2}{3}}$
(A1) for finding u_{1}
$u_{1}=9$
$S_{\infty}=\frac{u_{1}}{1-r}$
$S_{\infty}=\frac{9}{1-\left(-\frac{2}{3}\right)}$
$S_{\infty}=\frac{27}{5}$
(A1) for correct value
(A1) for substitution

A1

Your Practice Set - Applications and Interpretation for IBDP Mathematics

Exercise 12

1. The first three terms of an infinite geometric sequence are $\frac{10}{r}, 10,10 r$, where r is the common ratio. The two possible values of r are $\frac{1}{2}$ and -2 .
(a) State which value of r leads to this sum and justify your answer.
(b) Hence, calculate the sum of the sequence.
2. The first three terms of an infinite geometric sequence are $\frac{27}{r^{2}}, \frac{27}{r}, 27$, where r is the common ratio. The two possible values of r are 3 and $-\frac{1}{3}$.
(a) If the sequence has a finite sum, state which value of r leads to this sum and justify your answer.
(b) If the sequence does not have a finite sum, find the sum of the first four terms.
3. The first three terms of an infinite geometric sequence are $\log _{2} x^{r}, \log _{2} x^{r^{r^{2}}}, \log _{2} x^{r^{3}}$, where r is the common ratio. The two possible values of the common ratio r are $\frac{1}{2}$ and -2 .
(a) Consider the value of r such that $-1<r<1$. Find S_{∞}, giving the answer in terms of x.
(b) Consider the value of r such that $r<-1$. Find S_{6} when $x=\frac{1}{2}$.
4. The first three terms of an infinite geometric sequence are $u_{1}, u_{2}=m+2, u_{3}=9$, where $m \in \mathbb{Z}$. The two possible values of the common ratio r are $\frac{4}{3}$ and $-\frac{1}{3}$.
(a) Consider the value of r such that $-1<r<1$. Find m.
(b) Hence, calculate the sum of the sequence.

Chapter

Complex Numbers

SUMMARY POINTs

$\checkmark \quad$ Terminologies of complex numbers:
$\mathrm{i}=\sqrt{-1}$: Imaginary unit
$z=a+b \mathrm{i}$: Complex number in Cartesian form
a : Real part of z
b : Imaginary part of z
$z^{*}=a-b \mathrm{i}$: Conjugate of $z=a+b \mathrm{i}$
$|z|=r=\sqrt{a^{2}+b^{2}}$: Modulus of $z=a+b \mathrm{i}$
$\arg (z)=\theta=\arctan \frac{b}{a}$: Argument of $z=a+b \mathrm{i}$
$\checkmark \quad$ Properties of Argand diagram:

1. Real axis: Horizontal axis
2. Imaginary axis: Vertical axis

$\checkmark \quad$ Forms of complex numbers:
3. $z=a+b \mathrm{i}:$ Cartesian form
4. $z=r(\cos \theta+\mathrm{i} \sin \theta)=r \operatorname{cis} \theta$: Modulus-argument form
5. $z=r e^{i \theta}$: Euler form
$\checkmark \quad$ Properties of moduli and arguments of complex numbers z_{1} and z_{2} :
6. $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
7. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
8. $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$
9. $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}$
$\checkmark \quad$ If $z=a+b \mathrm{i}$ is a root of the polynomial equation $p(z)=0$, then $z^{*}=a-b \mathrm{i}$ is also a root of $p(z)=0$

Solutions of Chapter 6

19

Example

(a) Express $z=\frac{1}{2+\mathrm{i}}$ in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Q}$.
(b) Express z^{3} in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Q}$.
(c) Hence, write down the imaginary part of z^{3}.

Solution

(a) $\frac{1}{2+\mathrm{i}}=\frac{2}{5}-\frac{1}{5} \mathrm{i}$

A2
(b) $\quad z^{3}=\left(\frac{2}{5}-\frac{1}{5} \mathrm{i}\right)^{3}$

$$
\begin{equation*}
z^{3}=\frac{2}{125}-\frac{11}{125} \mathrm{i} \tag{A2}
\end{equation*}
$$

(c) $-\frac{11}{125}$

Exercise 19

1. (a) Express $z=\frac{1}{3-4 \mathrm{i}}$ in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Q}$.
(b) Express z^{2} in the form $a+b \mathbf{i}$, where $a, b \in \mathbb{Q}$.
(c) Hence, write down the real part of z^{2}.
2. z is a complex number such that $\frac{z}{1-z}=-1-0.5$ i.
(a) Express z in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Z}$.
(b) Hence, write down the imaginary part of z.
3. z is a complex number such that $2 z-1-\mathrm{i}=5+7 \mathrm{i}$.
(a) Express z in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Z}$.
(b) Express z^{4} in the form $a+b \mathbf{i}$, where $a, b \in \mathbb{Z}$.
(c) Hence, write down the real part of z^{4}.
4. z is a complex number such that $\frac{z}{5-12 \mathrm{i}}=\frac{24-7 \mathrm{i}}{\mathrm{i}}$.
(a) Express z in the form $a+b \mathbf{i}$, where $a, b \in \mathbb{Z}$.
(b) Express $\left(\mathrm{i}^{3} z\right)^{2}$ in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Z}$.
(c) Hence, write down the imaginary part of $\left(i^{3} z\right)^{2}$.

20 Paper 1 - Moduli and Arguments

Example

Consider the complex number $z=\frac{5 \mathrm{i}}{3+4 \mathrm{i}}$, where $z \in \mathbb{C}$.
(a) Express z in the form $a+\mathrm{i} b$, where $a, b \in \mathbb{Q}$.
(b) Find the exact value of the modulus of z.
(c) Find the value of the argument of z.

Solution

(a) $z=\frac{5 \mathrm{i}}{3+4 \mathrm{i}}$
$z=\frac{4}{5}+\frac{3}{5} \mathrm{i}$
A2
(b) The modulus of z

$$
\begin{aligned}
& =\sqrt{\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}} \\
& =\sqrt{1} \\
& =1
\end{aligned}
$$

(c) The argument of z
$=\tan ^{-1}\left(\frac{\frac{3}{5}}{\frac{5}{5}}\right)$
$=\tan ^{-1}\left(\frac{3}{4}\right)$
$=0.6435011088 \mathrm{rad}$
$=0.644 \mathrm{rad}$
A1

Exercise 20

1. Consider the complex number $z=\frac{2-\mathrm{i}}{2+\mathrm{i}}$, where $z \in \mathbb{C}$.
(a) Express z in the form $a+\mathrm{i} b$, where $a, b \in \mathbb{Q}$.
(b) Find the exact value of the modulus of z.
(c) Find the value of the argument of z.
2. Consider the complex number $z=\frac{10}{13}-\frac{24}{13} \mathrm{i}$, where $z \in \mathbb{C}$.
(a) Express z^{2} in the form $a+\mathrm{i} b$, where $a, b \in \mathbb{Q}$.
(b) Find the exact value of the modulus of z^{2}.
(c) Find the value of the argument of z^{2}.
3. Consider the complex number $z=\frac{8}{5}-\frac{6}{5} \mathrm{i}$, where $z \in \mathbb{C}$.
(a) (i) Express z^{3} in the form $a+\mathrm{i} b$, where $a, b \in \mathbb{Q}$.
(ii) Hence, write down $\left(z^{3}\right)^{*}+\frac{352}{125}$ in the form $a+\mathrm{i} b$, where $a, b \in \mathbb{Q}$.
(b) Find the exact value of the modulus of $\left(z^{3}\right)^{*}+\frac{352}{125}$.
(c) Write down the exact value of the argument of $\left(z^{3}\right)^{*}+\frac{352}{125}$.
4. The complex numbers z_{1} and z_{2} have arguments between 0 and π radians. Given that $z_{1}+\mathrm{i} z_{2}=0, z_{2}^{2}=-2-2 \sqrt{a} \mathrm{i}$ and $\left|z_{2}\right|=2$, where $a \in \mathbb{R}$.
(a) Find the modulus of z_{1}.
(b) Find the value of a.
(c) Hence, find the argument of $z_{2}{ }^{2}$.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

Example

In the following Argand diagram with the origin O , the point A represents the complex number $-4+10 \mathrm{i}$. The shape of OABC is a square.

(a) Determine the complex numbers represented by
(i) the point B ;
(ii) the point C .
(b) Hence, find the area of OABC .

Solution

(a)

$$
\text { (i) } \begin{array}{ll}
z_{B}=-4+10 \mathrm{i}+(10+4 \mathrm{i}) & \text { M1 } \\
z_{B}=6+14 \mathrm{i} & \text { A1 } \\
z_{C}=0+0 \mathrm{i}+(10+4 \mathrm{i}) & \text { M1 } \\
z_{C}=10+4 \mathrm{i} & \text { A1 }
\end{array}
$$

(b) The area of OABC

$$
\begin{aligned}
& =(\mathrm{OA})^{2} \\
& =\left(\sqrt{(-4)^{2}+10^{2}}\right)^{2} \\
& =116
\end{aligned}
$$

M1
A1

Exercise 21

1. In the following Argand diagram with the origin O, the point A and the point B represent the complex numbers $-2+9 i$ and $3-3 i$ respectively. The shape of $A B C D$ is a rectangle such that $A D=2 A B$.

(a) Write down
(i) $\operatorname{Re}(3-3 \mathrm{i})-\operatorname{Re}(-2+9 \mathrm{i})$;
(ii) $\operatorname{Im}(3-3 i)-\operatorname{Im}(-2+9 i)$.
(b) Find the length of AB .
(c) Hence, find the area of ABCD.
2. In the following Argand diagram with the origin O, the point A represents the complex numbers $-18+10 \mathrm{i}$. The shape of ABC is an equilateral triangle with the horizontal side $\mathrm{AB}=20$.

(a) Determine the complex numbers represented by
(i) the point B ;
(ii) the point C , giving the answer in exact value.
(b) Find the area of ABC.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

3. In an Argand diagram with the origin O , the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D represent the complex numbers $z=4+4 \mathrm{i}, z^{*}, \omega=-2+2 \mathrm{i}$ and ω^{*} respectively.
(a) Sketch the points A, B , C and D on the following Argand diagram, and sketch the quadrilateral ABDC .

(b) Find $\arg (\omega)$.
(c) Find the area of the quadrilateral ABDC .
4. In an Argand diagram with the origin O , the points A, B and C represent the complex numbers $z=-3+6 \mathrm{i}, z-6-15 \mathrm{i}$ and $(18+9 \mathrm{i})^{*}$ respectively.
(a) Sketch the points A, B and C on the following Argand diagram, and sketch the triangle ABC .

(b) Find $\arg (z-6-15 i)$.
(c) Find the exact area of the triangle ABC .

22

Paper 1 - Forms of Complex Numbers

Example

Consider the complex numbers $z_{1}=\operatorname{cis} \frac{\pi}{6}$ and $z_{2}=6 \operatorname{cis} \frac{2 \pi}{3}$.
(a) Express $z_{1} z_{2}$ in the form
(i) $r \operatorname{cis} \theta$;
(ii) $r \mathrm{e}^{\mathrm{i} \theta}$.
(b) Hence, find the imaginary part of $z_{1} z_{2}$.

Solution

(a)
(i) $\quad z_{1} z_{2}=\left(\operatorname{cis} \frac{\pi}{6}\right)\left(6 \operatorname{cis} \frac{2 \pi}{3}\right)$
$z_{1} z_{2}=(1)(6) \operatorname{cis}\left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)$
(M1) for valid approach
$z_{1} z_{2}=6 \operatorname{cis} \frac{5 \pi}{6}$
A1
(ii) $z_{1} z_{2}=6 e^{\frac{5 \pi_{i}}{6}}$

A1
(b) The imaginary part of $z_{1} z_{2}$

$$
\begin{aligned}
& =6 \sin \frac{5 \pi}{6} \\
& =3
\end{aligned}
$$

(M1) for valid approach
A1

Exercise 22

1. Consider the complex numbers $z_{1}=12 \operatorname{cis} \frac{7 \pi}{6}$ and $z_{2}=4 \operatorname{cis} \frac{\pi}{2}$.
(a) Express $\frac{z_{1}}{z_{2}}$ in the form
(i) $r \operatorname{cis} \theta$;
(ii) $r \mathrm{e}^{\mathrm{i} \theta}$.
(b) Hence, find the real part of $\frac{z_{1}}{z_{2}}$.
2. Consider the complex numbers $z_{1}=18 \sqrt{3} \operatorname{cis}\left(-\frac{\pi}{6}\right)$ and $z_{2}=\frac{1}{9} \operatorname{cis} \frac{\pi}{3}$.
(a) Express $z_{1} z_{2}$ in the form
(i) $r \operatorname{cis} \theta$;
(ii) $r \mathrm{e}^{\mathrm{i} \theta}$.
(b) Hence, find the real part of $z_{1} z_{2}$.
3. Consider the complex numbers $z_{1}=2 \operatorname{cis} \frac{\pi}{12}$ and $z_{2}=3 \operatorname{cis} \frac{\pi}{4}$.
(a) (i) Express z_{1}^{2} in the form $r \operatorname{cis} \theta$.
(ii) Hence, find the imaginary part of z_{1}^{2}.
(b) Express $z_{1}^{2} z_{2}$ in the form
(i) $r \operatorname{cis} \theta$;
(ii) $r \mathrm{e}^{\mathrm{i} \theta}$.
4. Consider the complex numbers $z_{1}=\frac{1}{3} \operatorname{cis} \frac{\pi}{6}$ and $z_{2}=\frac{1}{9} \operatorname{cis} \frac{11 \pi}{12}$.
(a) (i) Express z_{1}^{4} in the form $r \operatorname{cis} \theta$.
(ii) Hence, find the real part of z_{1}^{4}.
(b) Express $\frac{z_{2}}{z_{1}^{4}}$ in the form
(i) $r \operatorname{cis} \theta$;
(ii) $r e^{\mathrm{i} \theta}$.

Paper 1 - Complex Roots of Quadratic Equations

Example

A quadratic function is given by $f(x)=x^{2}-6 x+58$. It is given that the range of $f(x)$ is $\{y: y \geq 49\}$.
(a) Explain why there is no real root for the equation $f(x)=0$.
(b) Find the complex roots of the equation $f(x)=0$, giving the answer in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Q}$.
(c) If the above two complex roots are located on an Argand diagram, write down the distance between the roots.

Solution

(a) The range of $f(x)$ is $\{y: y \geq 49\}$, means the graph of $f(x)$ does not have any x-intercept. R1
(b) $x^{2}-6 x+58=0$
$x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(58)}}{2(1)}$
(A1) for substitution
$x=\frac{6 \pm \sqrt{-196}}{2}$
(A1) for simplification
$x=\frac{6 \pm \sqrt{196} \mathrm{i}}{2}$
$x=3 \pm 7 \mathrm{i}$
(c) 14

A1

Exercise 23

1. A quadratic function is given by $f(x)=-x^{2}+4 x-29$. It is given that the range of $f(x)$ is $\{y: y \leq-25\}$.
(a) Explain why there is no real root for the equation $f(x)=0$.
(b) Find the complex roots of the equation $f(x)=0$, giving the answer in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Q}$.
(c) If the above two complex roots are located on an Argand diagram, write down the distance between the roots.
2. A quadratic function is given by $f(x)=(x+5)^{2}+64$.
(a) Explain why there is no real root for the equation $f(x)=0$.
(b) Find the complex roots of the equation $f(x)=0$, giving the answer in the form $a+b \mathrm{i}$, where $a, b \in \mathbb{Q}$.
(c) If the above two complex roots are located on an Argand diagram, write down the distance between the roots.
3. A quadratic function is given by $f(x)=a x^{2}+b x+c$. It is given that the complex roots of $f(x)=0$ are $4+13 \mathrm{i}$ and $4-13 \mathrm{i}$.
(a) Write down the values of
(i) $(4+13 \mathrm{i})+(4-13 \mathrm{i})$;
(ii) $(4+13 i)(4-13 i)$.
(b) Hence, find the expression of $f(x)$, giving the answer in terms of a.

The graph of $f(x)$ passes through $(4,169)$.
(c) Find the value of a.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

4. A quadratic function is given by $f(x)=a x^{2}+b x+c$. It is given that the complex roots of $f(x)=0$ are $-\frac{1}{2}+2 \mathrm{i}$ and $-\frac{1}{2}-2 \mathrm{i}$.
(a) Write down the values of
(i) $\left(-\frac{1}{2}+2 \mathrm{i}\right)+\left(-\frac{1}{2}-2 \mathrm{i}\right)$;
(ii) $\left(-\frac{1}{2}+2 \mathrm{i}\right)\left(-\frac{1}{2}-2 \mathrm{i}\right)$.
(b) Hence, find the expression of $f(x)$, giving the answer in terms of a.

The graph of $f(x)$ passes through $(0,-17)$.
(c) Find the value of a.

24 Paper 2 - Applications of Complex Numbers

Example

Two alternating current electrical sources are given as $V_{1}=4 \cos (4 t+0.1)$ and $V_{2}=3 \cos 4 t$ respectively, where t represents time in seconds. The total voltage V is given by $V=V_{1}+V_{2}$.
(a) Write down the amplitude of
(i) $\quad V_{1}$;
(ii) $\quad V_{2}$.
(b) Find the period of V_{2}.

It is given that $V_{1}+V_{2}=\operatorname{Re}\left(e^{4 \mathrm{it}}(z+w)\right), z, w \in \mathbb{C}$.
(c) Find the expression of $z+w$.
(d) Express the following in the form $r(\cos \theta+i \sin \theta)$:
(i) z
(ii) w
(e) It is given that $z+w=L e^{i \alpha}$. Find
(i) L;
(ii) α.
(f) Using $V_{1}+V_{2}=\operatorname{Re}\left(e^{4 i \mathrm{i}}(z+w)\right)$, express V in the form $A \cos (B t+C), A, B$, $C \in \mathbb{R}$.
(g) Hence, find the total voltage when $t=1$.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

Solution

(a) (i) 4
(ii) 3
(b) The period of V_{2}
$=\frac{2 \pi}{4}$
$=\frac{\pi}{2} \mathrm{~s}$
A1
(c) $\quad V_{1}+V_{2}=4 \cos (4 t+0.1)+3 \cos 4 t$
$V_{1}+V_{2}=\operatorname{Re}\left(4 e^{(4 t+0.1) \mathrm{i}}\right)+\operatorname{Re}\left(3 e^{4 \mathrm{i}}\right)$
$V_{1}+V_{2}=\operatorname{Re}\left(4 e^{(4 t+0.1) \mathrm{i}}+3 e^{4 \mathrm{i} \mathrm{i}}\right)$
$V_{1}+V_{2}=\operatorname{Re}\left(e^{4 \mathrm{ti}}\left(4 e^{0.1 \mathrm{i}}+3\right)\right)$
$\therefore z+w=4 e^{0.1 i}+3$
(d)

$$
\text { (i) } \quad \begin{aligned}
z & =4 e^{0.1 \mathrm{i}} \\
z & =4(\cos 0.1+\mathrm{i} \sin 0.1)
\end{aligned}
$$

A1
(ii) $\quad w=3$

$$
\begin{equation*}
w=3(\cos 0+\mathrm{i} \sin 0) \tag{2}
\end{equation*}
$$

A1
(e) (i) $\quad z+w=4(\cos 0.1+\mathrm{i} \sin 0.1)+3(\cos 0+\mathrm{i} \sin 0)$

$$
z+w=(4 \cos 0.1+3 \cos 0)
$$

$$
+\mathrm{i}(4 \sin 0.1+3 \sin 0)
$$

$$
z+w=6.980016661+0.3993336666 \mathrm{i}
$$

$$
L=\sqrt{6.980016661^{2}+0.3993336666^{2}}
$$

MI

$$
L=6.991430466
$$

$$
L=6.99
$$

(ii) $\quad \alpha=\tan ^{-1} \frac{0.3993336666}{6.980016661}$

M1
$\alpha=0.0571486937$
$\alpha=0.0571$
A1
(f) $\quad V_{1}+V_{2}=\operatorname{Re}\left(e^{4 \mathrm{it}}(z+w)\right)$
$V_{1}+V_{2}=\operatorname{Re}\left(e^{4 \mathrm{i}} \cdot 6.991430466 e^{0.057148697 \mathrm{i}}\right) \quad$ (M1) for substitution
$V_{1}+V_{2}=\operatorname{Re}\left(6.991430466 e^{4 i+0.0571486937 \mathrm{i}}\right) \quad$ (A1) for correct approach
$V_{1}+V_{2}=6.991430466 \cos (4 t+0.0571486937)$
$V_{1}+V_{2}=6.99 \cos (4 t+0.0571)$
A1
(g) The required total voltage
$=6.991430466 \cos (4(1)+0.0571486937)$
(M1) for substitution
$=-4.260226648 \mathrm{~V}$
$=-4.26 \mathrm{~V}$
A1

Exercise 24

1. Two sound waves are given as $S_{1}=2 \sin (6 t-0.1)$ and $S_{2}=3 \sin (6 t+0.25)$ respectively, where S_{1} and S_{2} represent the amplitudes of the two sound waves respectively, in millimetres, and t represents time in seconds. The total amplitude S is given by $S=S_{1}+S_{2}$.
(a) Write down the amplitude of
(i) $\quad S_{1}$;
(ii) S_{2}.
(b) Find the period of S_{2}.

It is given that $S_{1}+S_{2}=\operatorname{Im}\left(e^{6 i \mathrm{i}}(z+w)\right), z, w \in \mathbb{C}$.
(c) Find the expression of $z+w$.
(d) Express the following in the form $r(\cos \theta+i \sin \theta)$:
(i) z
(ii) w

Your Practice Set - Applications and Interpretation for IBDP Mathematics

(e) It is given that $z+w=L e^{\mathrm{i} \alpha}$. Find
(i) L;
(ii) α.
(f) Using $S_{1}+S_{2}=\operatorname{Im}\left(e^{6 i \mathrm{i}}(z+w)\right)$, express S in the form $A \sin (B t+C), A, B$, $C \in \mathbb{R}$.
(g) Hence, write down the minimum total amplitude.
2. Two waves are given as $W_{1}=5 \cos (\pi t-0.9)$ and $W_{2}=7 \cos (\pi t-1.3)$ respectively, where W_{1} and W_{2} represent the amplitudes of the two waves respectively. t represents time in seconds. The total amplitude W is given by $W=W_{1}+W_{2}$.
(a) Write down the amplitude of
(i) $\quad W_{1}$;
(ii) W_{2}.
(b) Find the period of W_{2}.

It is given that $W_{1}+W_{2}=\operatorname{Re}\left(e^{\pi \mathrm{i}}(z+w)\right), z, w \in \mathbb{C}$.
(c) Find the expression of $z+w$.
(d) Express the following in the form $r(\cos \theta+i \sin \theta)$:
(i) z
(ii) w
(e) It is given that $z+w=L e^{\mathrm{i} \alpha}$. Find
(i) L;
(ii) α.
(f) Using $W_{1}+W_{2}=\operatorname{Re}\left(e^{\pi i \mathrm{i}}(z+w)\right)$, express W in the form $A \cos (B t+C), A, B$, $C \in \mathbb{R}$.
(g) Hence, find t when $W=0,1<t<2$.
3. Two sound waves are given as $S_{1}=8 \cos (10 t+0.05)$ and S_{2} respectively, where S_{1} and S_{2} represent the amplitudes of the two sound waves respectively, in millimetres, and t represents time in seconds. The total amplitude S is given by $S=S_{1}+S_{2}=10 \cos (10 t+0.15)$.
(a) For S, write down its
(i) amplitude;
(ii) period.

It is given that $S_{2}=\operatorname{Re}\left(e^{10 \dot{f}}(z-w)\right), z, w \in \mathbb{C}$.
(b) Find the expression of $z-w$.
(c) Express the following in the form $r(\cos \theta+i \sin \theta)$:
(i) z
(ii) w
(d) It is given that $z-w=L e^{\mathrm{i} \alpha}$. Find
(i) L;
(ii) α.
(e) Express S_{2} in the form $A \cos (B t+C), A, B, C \in \mathbb{R}$.
(f) Hence, find the value of t when $S_{2}=1.5,9.5<t<10$.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

4. Two alternating current electrical sources are given as $V_{1}=7 \sin (2 \pi t-0.95)$ and V_{2} respectively, where t represents time in seconds. The total voltage V is given by $V=V_{1}+V_{2}=6.3 \sin (2 \pi t-0.5)$.
(a) For V_{1}, write down its
(i) amplitude;
(ii) period.

It is given that $V_{2}=\operatorname{Im}\left(e^{2 \pi i \mathrm{i}}(z-w)\right), z, w \in \mathbb{C}$.
(b) Find the expression of $z-w$.
(c) Express the following in the form $r(\cos \theta+i \sin \theta)$:
(i) z
(ii) w
(d) It is given that $z-w=L e^{i \alpha}$. Find
(i) L;
(ii) α.
(e) Express V_{2} in the form $A \sin (B t+C), A, B, C \in \mathbb{R}$.
(f) Hence, find the range of values of t when $V_{2}>2,0.5 \leq t \leq 1.5$.

Chapter

7

Matrices

SUMMARY POINTs

$\checkmark \quad$ Terminologies of matrices:
$\mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right):$ A $m \times n$ matrix with m rows and n columns
$a_{i j}$: Element on the i th row and the j th column
$\mathbf{I}=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right):$ Identity matrix
$\mathbf{0}=\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0\end{array}\right):$ Zero matrix
$\checkmark \quad$ Terminologies of matrices:
$\left(\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right)$: Diagonal matrix
$|\mathbf{A}|=\operatorname{det}(\mathbf{A})$: Determinant of \mathbf{A}
\mathbf{A} is non-singular if $\operatorname{det}(\mathbf{A}) \neq 0$
\mathbf{A}^{-1} : Inverse of \mathbf{A}
\mathbf{A}^{-1} exists if \mathbf{A} is non-singular
$\checkmark \quad$ For any 2×2 square matrices $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$:

1. $|\mathbf{A}|=\operatorname{det}(\mathbf{A})=a d-b c$: Determinant of \mathbf{A}
2. $\quad \mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$: Inverse of \mathbf{A}
$\checkmark \quad$ Operations of matrices:
3. $\quad\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right) \pm\left(\begin{array}{ccc}b_{11} & \cdots & b_{1 n} \\ \vdots & \ddots & \vdots \\ b_{m 1} & \cdots & b_{m n}\end{array}\right)=\left(\begin{array}{ccc}a_{11} \pm b_{11} & \cdots & a_{1 n} \pm b_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} \pm b_{m 1} & \cdots & a_{m n} \pm b_{m n}\end{array}\right)$
4. $k\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right)=\left(\begin{array}{ccc}k a_{11} & \cdots & k a_{1 n} \\ \vdots & \ddots & \vdots \\ k a_{m 1} & \cdots & k a_{m n}\end{array}\right)$
5. $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}$: The element on the i th row and the j th column of $\mathbf{C}=\mathbf{A B}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right)\left(\begin{array}{ccc}b_{11} & \cdots & b_{1 k} \\ \vdots & \ddots & \vdots \\ b_{n 1} & \cdots & b_{n k}\end{array}\right)$, where \mathbf{A} and \mathbf{B} are $m \times n$ and $n \times k$ matrices respectively
$\checkmark \quad$ A 2×2 system $\left\{\begin{array}{l}a x+b y=c \\ d x+e y=f\end{array}\right.$ can be expressed as $\mathbf{A X}=\mathbf{B}$, where $\mathbf{X}=\binom{x}{y}$ can be solved by $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$

A 3×3 system $\left\{\begin{array}{l}a x+b y+c z=d \\ e x+f y+g z=h \\ i x+j y+k z=l\end{array}\right.$ can be expressed as $\mathbf{A X}=\mathbf{B}$, where $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ can be solved by $\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$
$\checkmark \quad$ Eigenvalues and eigenvectors of \mathbf{A} :

1. $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$: Characteristic polynomial of \mathbf{A}
2. Solution(s) of $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$: Eigenvalue(s) of \mathbf{A}
3. \mathbf{v} : Eigenvector of \mathbf{A} corresponding to the eigenvalue λ, which satisfies $\mathbf{A v}=\lambda \mathbf{v}$
$\checkmark \quad$ Diagonalization of \mathbf{A} :
4. $\mathbf{D}=\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)$: Diagonal matrix of the eigenvalues of \mathbf{A}
5. $\quad \mathbf{V}=\left(\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right)$: A matrix of the eigenvectors of \mathbf{A}
6. $\quad \mathbf{A}=\mathbf{V D V}^{-1} \Rightarrow \mathbf{A}^{n}=\mathbf{V D}^{n} \mathbf{V}^{-1}$

Your Practice Set - Applications and Interpretation for IBDP Mathematics

SUMMARY POINTs

$\checkmark \quad$ Two-dimensional transformation matrices:

1. $\quad\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$: Reflection about the x-axis
2. $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$: Reflection about the y-axis
3. $\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$: Reflection about the line $y=m x$, where $m=\tan \theta$
4. $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right)$: Vertical stretch with scale factor k
5. $\quad\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right)$: Horizontal stretch with scale factor k
6. $\quad\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$: Enlargement about the origin with scale factor k
7. $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$: Rotation with positive angle θ anticlockwise about the origin
8. $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$: Rotation with positive angle θ clockwise about the origin

25

Example

Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 2 & 3 & 1 \\ -2 & 2 & 0\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}3 x^{2} & 4 x^{2} \\ 2 x^{3} & 3 x^{3}\end{array}\right)$.
(a) Write down $\operatorname{det} \mathbf{A}$.
(b) Find $\operatorname{det} \mathbf{B}$.
(c) Solve the equation $4 \operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{B}$.

Solution

(a) 8
(b) $\quad \operatorname{det} \mathbf{B}=\left(3 x^{2}\right)\left(3 x^{3}\right)-\left(4 x^{2}\right)\left(2 x^{3}\right)$
$\operatorname{det} \mathbf{B}=9 x^{5}-8 x^{5}$
$\operatorname{det} \mathbf{B}=x^{5}$
(c) $4 \operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{B}$
$\therefore 4(8)=x^{5}$
$x^{5}=32$
$x=2$
A1

Exercise 25

1. Let $\mathbf{A}=\left(\begin{array}{ccc}2 & 4 & 1 \\ -3 & -5 & 3 \\ 1 & 0 & -1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}2 x^{2} & 4 \\ x & x\end{array}\right)$.
(a) Write down $\operatorname{det} \mathbf{A}$.
(b) Find $\operatorname{det} \mathbf{B}$.
(c) Solve the equation $(11-\operatorname{det} \mathbf{A}) x=\operatorname{det} \mathbf{B}$.
2. Let $\mathbf{A}=\left(\begin{array}{ccc}3 & 1 & -1 \\ 0 & 2 & -5 \\ 1 & 0 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}1+x & x \\ -2 x & 1-x\end{array}\right)$.
(a) Write down $\operatorname{det} \mathbf{A}$.
(b) Find $\operatorname{det} \mathbf{B}$.
(c) Solve the equation $\operatorname{det} \mathbf{A}+\operatorname{det} \mathbf{B}-5 x=0$.
3. Let $\mathbf{A}=\left(\begin{array}{cc}4 & 1 \\ 3 e^{x} & e^{2 x}\end{array}\right)$.
(a) Find $\operatorname{det} \mathbf{A}$.
(b) Solve the equation $\operatorname{det} \mathbf{A}-1=0$.
4. Let $\mathbf{A}=\left(\begin{array}{cc}\ln x & 3 \\ -2 & \ln x\end{array}\right)$.
(a) Find $\operatorname{det} \mathbf{A}$.
(b) Solve the equation $\operatorname{det} \mathbf{A}=5 \ln x$, giving the answer(s) in terms of e.

26 Paper 1 - Inverse of a Matrix

Example

Let $\mathbf{A}=\left(\begin{array}{ccc}3 & 4 & 5 \\ 2 & -3 & -4 \\ 2 & -1 & 0\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.

It is given that $\mathbf{A B}+\mathbf{I}=\left(\begin{array}{ccc}2 & 3 & 1 \\ 0 & 1 & -1 \\ 3 & -3 & 2\end{array}\right)$, where \mathbf{B} and \mathbf{I} are 3×3 matrices.
(b) Find B .

Solution

(a) $\quad \mathbf{A}^{-1}=\left(\begin{array}{ccc}\frac{1}{6} & \frac{5}{24} & \frac{1}{24} \\ \frac{1}{3} & \frac{5}{12} & -\frac{11}{12} \\ -\frac{1}{6} & -\frac{11}{24} & \frac{17}{24}\end{array}\right)$

A2
[2]
(b) $\quad \mathbf{A B}+\mathbf{I}=\left(\begin{array}{ccc}2 & 3 & 1 \\ 0 & 1 & -1 \\ 3 & -3 & 2\end{array}\right)$
$\mathbf{A B}=\left(\begin{array}{ccc}1 & 3 & 1 \\ 0 & 0 & -1 \\ 3 & -3 & 1\end{array}\right)$
$\mathbf{B}=\mathbf{A}^{-1}\left(\begin{array}{ccc}1 & 3 & 1 \\ 0 & 0 & -1 \\ 3 & -3 & 1\end{array}\right)$
(M1) for valid approach

$$
\mathbf{B}=\left(\begin{array}{ccc}
\frac{7}{24} & \frac{3}{8} & 0 \\
-\frac{29}{12} & \frac{15}{4} & -1 \\
\frac{47}{24} & -\frac{21}{8} & 1
\end{array}\right)
$$

Exercise 26

1. Let $\mathbf{A}=\left(\begin{array}{ccc}-6 & -3 & 1 \\ 1 & 4 & -2 \\ 1 & -2 & 1\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.

It is given that $\mathbf{A B}+\left(\begin{array}{ccc}1 & -2 & -2 \\ 0 & 1 & 3 \\ -1 & 0 & -3\end{array}\right)=2 \mathbf{I}$, where \mathbf{B} and \mathbf{I} are 3×3 matrices.
(b) Find \mathbf{B}.
2. Let $\mathbf{A}=\left(\begin{array}{ccc}3 & 1 & 0 \\ 2 & 1 & 1 \\ -1 & 1 & -1\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.

It is given that $\mathbf{A B}=\left(\begin{array}{ccc}-8 & 5 & 3 \\ 2 & 6 & 7 \\ 5 & -4 & -4\end{array}\right)-5 \mathbf{I}$, where \mathbf{B} and \mathbf{I} are 3×3 matrices.
(b) Find \mathbf{B}.
3. Let $\mathbf{A}=\left(\begin{array}{ccc}2 & 3 & 2 \\ -3 & 3 & -4 \\ 2 & 1 & 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}10 & -7 & 2 \\ 5 & -9 & 6 \\ -4 & 3 & 8\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.

It is given that $\mathbf{A}^{-1} \mathbf{C A}=\frac{1}{2} \mathbf{B}$, where \mathbf{C} is a 3×3 matrix.
(b) Find C.
4. Let $\mathbf{A}=\left(\begin{array}{ccc}0 & 4 & 5 \\ 0 & 2 & 3 \\ 1 & -5 & 7\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & -3 & 2 \\ 0 & 0 & 1\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.

It is given that $\mathbf{A C A} \mathbf{A}^{-1}=\mathbf{B}^{3}$, where \mathbf{C} is a 3×3 matrix.
(b) Find C.

27

Example

Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & -5 & -6 \\ 0 & -3 & -2\end{array}\right), \mathbf{B}=\left(\begin{array}{c}2 \\ 7 \\ 11\end{array}\right)$ and $\mathbf{X}=\left(\begin{array}{c}x \\ y \\ z\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.
(b) Solve \mathbf{X} in the equation $\mathbf{A X}=\mathbf{B}$.

Solution

(a) $\quad \mathbf{A}^{-1}=\left(\begin{array}{ccc}1 & \frac{5}{8} & -\frac{3}{8} \\ 0 & \frac{1}{4} & -\frac{3}{4} \\ 0 & -\frac{3}{8} & \frac{5}{8}\end{array}\right)$
(b) $\quad \mathbf{A X}=\mathbf{B}$
$\mathbf{X}=\mathbf{A}^{-1} \mathbf{B}$
(M1) for valid approach

$$
\mathbf{X}=\left(\begin{array}{c}
\frac{9}{4} \\
-\frac{13}{2} \\
\frac{17}{4}
\end{array}\right)
$$

A2

Exercise 27

1. Let $\mathbf{A}=\left(\begin{array}{lll}2 & 1 & 6 \\ 4 & 5 & 1 \\ 1 & 2 & 4\end{array}\right), \mathbf{B}=\left(\begin{array}{c}-3 \\ 0 \\ 4\end{array}\right)$ and $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.
(b) Solve \mathbf{X} in the equation $\mathbf{A X}=\mathbf{B}$.
2. Let $\mathbf{A}=\left(\begin{array}{ccc}2 & 0 & -5 \\ 1 & 2 & -8 \\ 6 & -1 & -3\end{array}\right)$.
(a) Write down \mathbf{A}^{-1}.
(b) Hence, solve the system $\left\{\begin{array}{c}2 x-5 z=740 \\ x+2 y-8 z=592 \text {. } \\ 6 x-y-3 z=-444\end{array}\right.$
3. Let $\mathbf{A}=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & a & 1 \\ 1 & 1 & 0\end{array}\right)$, where $a \in \mathbb{Z}$. It is given that $\mathbf{A}^{-1}=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2\end{array}\right)$.
(a) Find a.

It is also given that $\mathbf{B}=\left(\begin{array}{l}0 \\ 6 \\ 9\end{array}\right)$ and $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
(b) Solve \mathbf{X} in the equation $\mathbf{A X}=\mathbf{B}$.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

4. Let $\mathbf{A}=\left(\begin{array}{ccc}p & 16 & 16 \\ 8 & -8 & q \\ 8 & -16 & -16\end{array}\right)$, where $p, q \in \mathbb{Z}$. It is given that $\mathbf{A}^{-1}=\left(\begin{array}{ccc}\frac{1}{16} & 0 & \frac{1}{16} \\ \frac{1}{64} & \frac{1}{16} & -\frac{5}{64} \\ \frac{1}{64} & -\frac{1}{16} & \frac{3}{64}\end{array}\right)$.
(a) Find p and q.

It is also given that $\mathbf{B}=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$ and $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
(b) Solve \mathbf{X} in the equation $\mathbf{A X}=\mathbf{B}$.

28
 Paper 1 - Transformation Matrices

Example

The transformation \mathbf{S} and \mathbf{T} are represented by the matrices $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$ respectively.
(a) Find ST .
(b) Describe the transformation represented by ST .
(c) ST transforms the point $(2,4)$ to the point P . Find the coordinates of P .

Solution

(a) $\quad \mathbf{S T}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$
$\mathbf{S T}=\left(\begin{array}{rr}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$
(b) Rotation anticlockwise of $\frac{2 \pi}{3}$ radians about the origin.

A1
(c) $\quad\binom{x}{y}=\left(\begin{array}{rr}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)\binom{2}{4}$
$\binom{x}{y}=\binom{-4.464101615}{-0.2679491924}$
(M1) for valid approach

Thus, the coordinates of P are $(-4.46,-0.268)$. A1

Your Practice Set - Applications and Interpretation for IBDP Mathematics

Exercise 28

1. The transformation \mathbf{S} and \mathbf{T} are represented by the matrices $\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right)$ respectively.
(a) Find ST .
(b) Describe the transformation represented by ST .
(c) ST transforms the point $(3,-5)$ to the point P . Find the coordinates of P .
2. The transformation \mathbf{S} and \mathbf{T} are represented by the matrices $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ and $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ respectively.
(a) Find ST .
(b) Describe the transformation represented by ST .
(c) ST transforms the point P to the point $(2,1)$. Find the coordinates of P .
3. Let $\mathbf{T}=\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$.
(a) Describe the transformation represented by \mathbf{T}.
(b) $\quad \mathbf{T}$ transforms the point $(4,4)$ to the point P . Find the coordinates of P .
(c) Write down the smallest positive integer n such that $\mathbf{T}^{n}=\mathbf{I}$, where \mathbf{I} is a 2×2 identity matrix.
4. Let $\mathbf{T}=\left(\begin{array}{rr}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$.
(a) Describe the transformation represented by \mathbf{T}.
(b) $\quad \mathbf{T}$ transforms the point P to the point $(-2,2 \sqrt{3})$. Find the coordinates of P .
(c) Write down the smallest positive integer n such that $\mathbf{T}^{n}=\mathbf{I}$, where \mathbf{I} is a 2×2 identity matrix.

Example

The matrix \mathbf{A} is defined by $\mathbf{A}=\left(\begin{array}{ll}-2 & 1 \\ -5 & 4\end{array}\right)$. Let λ_{1} and λ_{2} be the eigenvalues of \mathbf{A}, where $\lambda_{1}<\lambda_{2}$.
(a) Find the characteristic polynomial of \mathbf{A}.
(b) Hence, write down the values of λ_{1} and λ_{2}.

Let \mathbf{v}_{1} and \mathbf{v}_{2} be the eigenvectors of \mathbf{A} corresponding to λ_{1} and λ_{2} respectively.
(c) Write down \mathbf{v}_{1} and \mathbf{v}_{2}.

It is given that $\operatorname{det}(\mathbf{A})=\alpha \lambda_{1} \lambda_{2}$, where $\alpha \in \mathbb{R}$.
(d) Find α.

It is given that $\mathbf{A}^{n}=\mathbf{P D}^{n} \mathbf{P}^{-1}$, where \mathbf{P} is a 2×2 matrix and \mathbf{D} is a 2×2 diagonal matrix.
(e) Write down
(i) \mathbf{P};
(ii) \mathbf{D}^{n}.
(f) \quad Hence, express \mathbf{A}^{n} in terms of n.

Solution

(a) The characteristic polynomial of \mathbf{A}

$$
=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})
$$

$$
=\left|\begin{array}{cc}
-2-\lambda & 1 \\
-5 & 4-\lambda
\end{array}\right|
$$

$$
=(-2-\lambda)(4-\lambda)-(1)(-5)
$$

$$
=-8+2 \lambda-4 \lambda+\lambda^{2}+5
$$

$$
=\lambda^{2}-2 \lambda-3
$$

(b) $\quad \lambda_{1}=-1, \lambda_{2}=3$
(c) $\quad \mathbf{v}_{1}=\binom{1}{1}, \mathbf{v}_{2}=\binom{1}{5}$
(d) $\operatorname{det}(\mathbf{A})=\alpha \lambda_{1} \lambda_{2}$

$$
\begin{aligned}
& \therefore-3=\alpha(-1)(3) \\
& \alpha=1
\end{aligned}
$$

(e)
(i) $\quad\left(\begin{array}{ll}1 & 1 \\ 1 & 5\end{array}\right)$
(ii) $\quad\left(\begin{array}{cc}(-1)^{n} & 0 \\ 0 & 3^{n}\end{array}\right)$

A2
[3]
(f) $\quad \mathbf{A}^{n}=\left(\begin{array}{ll}1 & 1 \\ 1 & 5\end{array}\right)\left(\begin{array}{cc}(-1)^{n} & 0 \\ 0 & 3^{n}\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 5\end{array}\right)^{-1}$

$$
\mathbf{A}^{n}=\left(\begin{array}{cc}
(-1)^{n} & 3^{n} \\
(-1)^{n} & 5 \cdot 3^{n}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right)^{-1}
$$

$$
\mathbf{A}^{n}=\left(\begin{array}{cc}
(-1)^{n} & 3^{n} \\
(-1)^{n} & 5 \cdot 3^{n}
\end{array}\right)\left(\begin{array}{cc}
\frac{5}{4} & -\frac{1}{4} \\
-\frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

$$
\mathbf{A}^{n}=\left(\begin{array}{ll}
\frac{5}{4}(-1)^{n}-\frac{1}{4} \cdot 3^{n} & -\frac{1}{4}(-1)^{n}+\frac{1}{4} \cdot 3^{n} \\
\frac{5}{4}(-1)^{n}-\frac{5}{4} \cdot 3^{n} & -\frac{1}{4}(-1)^{n}+\frac{5}{4} \cdot 3^{n}
\end{array}\right)
$$

Your Practice Set - Applications and Interpretation for IBDP Mathematics

Exercise 29

1. The matrix \mathbf{A} is defined by $\mathbf{A}=\left(\begin{array}{cc}-2 & -3 \\ 1 & 2\end{array}\right)$. Let λ_{1} and λ_{2} be the eigenvalues of \mathbf{A}, where $\lambda_{1}<\lambda_{2}$.
(a) Find the characteristic polynomial of \mathbf{A}.
(b) Hence, write down the values of λ_{1} and λ_{2}.

Let \mathbf{v}_{1} and \mathbf{v}_{2} be the eigenvectors of \mathbf{A} corresponding to λ_{1} and λ_{2} respectively.
(c) Write down \mathbf{v}_{1} and \mathbf{v}_{2}.

It is given that $\operatorname{det}(\mathbf{A})=\frac{\alpha}{\lambda_{1} \lambda_{2}}$, where $\alpha \in \mathbb{R}$.
(d) Find α.

It is given that $\mathbf{A}^{n}=\mathbf{P D}^{n} \mathbf{P}^{-1}$, where \mathbf{P} is a 2×2 matrix and \mathbf{D} is a 2×2 diagonal matrix.
(e) Write down
(i) \mathbf{P};
(ii) \mathbf{D}^{n}.
(f) \quad Hence, express \mathbf{A}^{n} in terms of n.
2. The matrix \mathbf{A} is defined by $\mathbf{A}=\left(\begin{array}{cc}9 & -4 \\ 2 & 3\end{array}\right)$. Let λ_{1} and λ_{2} be the eigenvalues of \mathbf{A}, where $\lambda_{1}<\lambda_{2}$.
(a) Find $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$, giving the answer in terms of λ.
(b) Hence, write down the values of λ_{1} and λ_{2}.

Let \mathbf{v}_{1} and \mathbf{v}_{2} be the eigenvectors of \mathbf{A} corresponding to λ_{1} and λ_{2} respectively.
(c) Write down \mathbf{v}_{1} and \mathbf{v}_{2}.

It is given that $3 \operatorname{det}(\mathbf{A})+\alpha \lambda_{1} \lambda_{2}=0$, where $\alpha \in \mathbb{R}$.
(d) Find α.

It is given that $\mathbf{A}^{n}=\mathbf{P D}^{n} \mathbf{P}^{-1}$, where \mathbf{P} is a 2×2 matrix and \mathbf{D} is a 2×2 diagonal matrix.
(e) Write down
(i) \mathbf{P};
(ii) \mathbf{D}^{n}.
(f) Hence, find \mathbf{A}^{10}, giving the entries in exact values.
3. The matrix \mathbf{M} is defined by $\mathbf{M}=\left(\begin{array}{cc}-1 & \frac{1}{16} \\ -35 & 2\end{array}\right)$. Let λ_{1} and λ_{2} be the eigenvalues of \mathbf{M}, where $\lambda_{1}<\lambda_{2}$.
(a) Find the characteristic polynomial of \mathbf{M}.
(b) Hence, write down the values of λ_{1} and λ_{2}.

Let \mathbf{v}_{1} and \mathbf{v}_{2} be the eigenvectors of \mathbf{M} corresponding to λ_{1} and λ_{2} respectively.
(c) Write down \mathbf{v}_{1} and \mathbf{v}_{2}.

It is given that $\mathbf{M}^{n}=\mathbf{P D}^{n} \mathbf{P}^{-1}$, where \mathbf{P} is a 2×2 matrix and \mathbf{D} is a 2×2 diagonal matrix.
(d) Write down
(i) \mathbf{P};
(ii) \mathbf{D}^{n}.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

(e) Hence, express \mathbf{M}^{n} in terms of n.

Let $f(n)$ be the first diagonal entry of \mathbf{M}^{n}.
(f) Write down $\lim _{n \rightarrow \infty} f(n)$.
4. The matrix \mathbf{M} is defined by $\mathbf{M}=\left(\begin{array}{cc}\frac{3}{2} & -\frac{1}{2} \\ 1 & 0\end{array}\right)$. Let λ_{1} and λ_{2} be the eigenvalues of \mathbf{M}, where $\lambda_{1}<\lambda_{2}$.
(a) Find the characteristic polynomial of \mathbf{M}.
(b) Hence, write down the values of λ_{1} and λ_{2}.

Let \mathbf{v}_{1} and \mathbf{v}_{2} be the eigenvectors of \mathbf{M} corresponding to λ_{1} and λ_{2} respectively.
(c) Write down \mathbf{v}_{1} and \mathbf{v}_{2}.

It is given that $\mathbf{M}^{n}=\mathbf{P D}^{n} \mathbf{P}^{-1}$, where \mathbf{P} is a 2×2 matrix and \mathbf{D} is a 2×2 diagonal matrix.
(d) Write down
(i) \mathbf{P};
(ii) \mathbf{D}^{n}.
(e) Hence, express \mathbf{M}^{n} in terms of n.

Let $g(n)$ be the last diagonal entry of \mathbf{M}^{n}.
(f) Write down $\lim _{n \rightarrow \infty} g(n)$.

30 Paper 2 - Miscellaneous Problems

Example

The function f is defined by $f(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbb{Z}$. It is given that the graph of f passes through $(-10,540),(10,500)$ and $(20,1980)$.
(a) (i) Show that $100 a-10 b+c=540$.
(ii) Write down the other two equations in a, b and c.

The above three equations can be expressed in a matrix equation $\mathbf{A X}=\mathbf{B}$, where \mathbf{A} is a
3×3 matrix, and $\mathbf{X}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and \mathbf{B} are two 3×1 matrices.
(b) Write down
(i) \mathbf{A};
(ii) \mathbf{B};
(iii) $\quad \mathbf{A}^{-1}$.
(c) Hence, find the values of a, b and c.
(d) Find
(i) the equation of the axis of symmetry;
(ii) the y-coordinate of the vertex.

Solution
(a)
(i)
$540=a(-10)^{2}+b(-10)+c$ A1
$100 a-10 b+c=540$
AG
(ii) $100 a+10 b+c=500$

A1
$400 a+20 b+c=1980$
A1
(b)
(i) $\quad \mathbf{A}=\left(\begin{array}{ccc}100 & -10 & 1 \\ 100 & 10 & 1 \\ 400 & 20 & 1\end{array}\right)$
(ii) $\mathbf{B}=\left(\begin{array}{c}540 \\ 500 \\ 1980\end{array}\right)$
(iii) $\quad \mathbf{A}^{-1}=\left(\begin{array}{ccc}\frac{1}{600} & -\frac{1}{200} & \frac{1}{300} \\ -\frac{1}{20} & \frac{1}{20} & 0 \\ \frac{1}{3} & 1 & -\frac{1}{3}\end{array}\right)$
(c) $\quad a=5, b=-2$ and $c=20$

For any one correct answer A1
For all correct answers
A1
(d) (i) The equation of the axis of symmetry:

$$
\begin{aligned}
& x=-\frac{-2}{2(5)} \\
& x=\frac{1}{5}
\end{aligned}
$$

(A1) for substitution

A1
(ii) The y-coordinate of the vertex

$$
\begin{array}{ll}
=5\left(\frac{1}{5}\right)^{2}-2\left(\frac{1}{5}\right)+20 & \text { (M1) for substitution } \\
=\frac{99}{5} & \text { A1 }
\end{array}
$$

Exercise 30

1. The function f is defined by $f(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbb{Z}$. It is given that the graph of f passes through $(50,3600),(20,-900)$ and $(5,-1125)$.
(a) (i) Show that $2500 a+50 b+c=3600$.
(ii) Write down the other two equations in a, b and c.

The above three equations can be expressed in a matrix equation $\mathbf{A X}=\mathbf{B}$, where \mathbf{A} is a 3×3 matrix, and $\mathbf{X}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and \mathbf{B} are two 3×1 matrices.
(b) Write down
(i) \mathbf{A};
(ii) \mathbf{B};
(iii) \mathbf{A}^{-1}.
(c) Hence, find the values of a, b and c.
(d) Find
(i) the x-intercept(s) of the graph of f;
(ii) the y-coordinate of the vertex.
2. The function f is defined by $f(x)=a x^{3}+b x^{2}+c x+d$, where $a, b, c, d \in \mathbb{Z}$. It is given that the graph of f passes through $(0,-384),(2,-840),(6,-2520)$ and $(10,-5544)$.
(a) (i) Show that $d=-384$.
(ii) Show that $4 a+2 b+c=-228$.
(iii) Write down the other two equations in a, b and c.

Your Practice Set - Applications and Interpretation for IBDP Mathematics

The above three equations can be expressed in a matrix equation $\mathbf{A X}=\mathbf{B}$, where \mathbf{A} is a
3×3 matrix, and $\mathbf{X}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and \mathbf{B} are two 3×1 matrices.
(b) Write down
(i) \mathbf{A};
(ii) \mathbf{B};
(iii) $\quad \mathbf{A}^{-1}$.
(c) Hence, find the values of a, b and c.
(d) Write down
(i) the x-intercept(s) of the graph of f;
(ii) the y-intercept of the graph of f.
3. Let $\mathbf{M}=\left(\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right)$.
(a) (i) Find \mathbf{M}^{2}.
(ii) Find \mathbf{M}^{3}.
(iii) By using the above results, write down \mathbf{M}^{50}.

Let $s(n)=\mathbf{M}+\mathbf{M}^{2}+\mathbf{M}^{3}+\cdots+\mathbf{M}^{n}$, where $n \geq 1$.
(b) (i) Write down $s(2)$.
(ii) Write down $s(3)$.
(iii) By using (b)(i) and (b)(iii), find $s(50)$.

Let $p(n)=\mathbf{M} \times \mathbf{M}^{2} \times \mathbf{M}^{3} \times \cdots \times \mathbf{M}^{n}$, where $n \geq 1$.
(c) Find $p(50)$.
4. Let $\mathbf{A}=\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$.
(a) (i) Find \mathbf{A}^{2}.
(ii) Find \mathbf{A}^{3}.
(iii) By using the above results, write down \mathbf{A}^{30}.

Let $\mathbf{B}=\mathbf{A}+\left(\begin{array}{ll}0 & 3 \\ 0 & 1\end{array}\right)$.
(b) (i) Show that $\mathbf{B}^{2}=\left(\begin{array}{cc}1 & 21 \\ 0 & 4\end{array}\right)$.
(ii) Find \mathbf{B}^{3}.

It is given that \mathbf{B}^{4} can be expressed as $\left(\begin{array}{cc}1 & 7+14+28+56 \\ 0 & 16\end{array}\right)$.
(iii) Find \mathbf{B}^{30}.
(c) \quad Explain why $\operatorname{det}\left(\mathbf{B}^{n}\right)=\operatorname{det}\left(\mathbf{A}^{n}\right)+\operatorname{det}\left(\left(\begin{array}{ll}0 & 3 \\ 0 & 1\end{array}\right)^{n}\right)$ is not always true for $n \geq 1$, $n \in \mathbb{Z}$.

