

Lists of Resources when Revising IBDP Mathematics

Math AA Book 1 Solution		Math Al Book 1 Solution	
	CLICK HERE		CLICK HERE
Math AA Book 2 Solution			Math AI Book 2 Solution
	CLICK HERE		CLICK HERE
Free Last Minute Formula & Concept List		IBDP Mathematics Exam Info & Skills	
	CLICK HERE		CLICK HERE
Math & GDC Skills Video List			More Mock Papers?
	CLICK HERE		

Chapter

Geometric Sequences

SUMMARY POINTs

 $S_{\infty} = \frac{u_1}{1-r}$: The sum to infinity of a geometric sequence u_n , given that -1 < r < 1

Solutions of Chapter 3

11 Paper 1 – Sum to Infinity Example

The f	irst three terms of a geometric sequence are $u_1 = 800$, $u_2 = 720$ and $u_3 = 648$.	
(a)	Find the value of r .	[0]
(b)	Find the value of S_6 .	[2]
(c)	Find the sum to infinity of this sequence	[2]
(0)	The die suit to minity of this sequence.	[2]

Solution

(a)	$r = \frac{720}{800}$	(M1) for valid approach
	r = 0.9	A1
		[2]

(b)
$$S_6 = \frac{u_1(1-r^6)}{1-r}$$

 $S_6 = \frac{800(1-(0.9)^6)}{1-0.9}$ (A1) for substitution
 $S_6 = 3748.472$
 $S_6 = 3750$ A1
[2]

Exercise 11

1.	The first three terms of a geometric sequence are $u_1 = -900$, $u_2 = -540$ and $u_3 = -324$.		4.
	(a)	Find the value of r .	[0]
	(b)	Find the value of S_{10} .	[2]
	(c)	Find the sum to infinity of this sequence.	[2]
			[2]
2.	The fi $x > 0$	rst three terms of an infinite geometric sequence are $\ln x^{48}$, $\ln x^{24}$ and $\ln x^{12}$, where $\ln x^{48}$ is a sequence of $\ln x^{48}$ is a sequence of $\ln x^{48}$.	nere
	(a)	Find the common ratio of the geometric sequence.	[3]
	(b)	Find u_6 .	[9]
	(c)	Find the sum to infinity of this sequence.	[2]
			[2]
3.	The fi	rst three terms of an infinite geometric sequence are e^{12x} , e^{8x} and e^{4x} .	
	(a)	Find the common ratio of the geometric sequence.	[2]
	(b)	Find u_7 .	[2]
	(c)	Find x if the sum to infinity of this sequence is $\frac{e^{96}}{24}$.	[2]
		$e^{24} - 1$	[3]
4.	The fi	rst three terms of an infinite geometric sequence are 3^{10x} , 3^{9x} and 3^{8x} .	
	(a)	Find the common ratio of the geometric sequence.	[0]
	(b)	Find a general expression for u_n .	[2]
	(c)	Find the sum to infinity if the common ratio is $\frac{1}{3}$, giving the answer in the form	[3] m
		$a \times 3^b$.	[3]
			r.~ 1

12 Paper 1 – Condition of Sum to Infinity Example

The first three terms of an infinite geometric sequence are $-\frac{6}{r}$, -6, -6r, where *r* is the common ratio. The two possible values of *r* are $\frac{3}{2}$ and $-\frac{2}{3}$.

Solution

(a)	$r = -\frac{2}{3}$ leads to a finite sum.	A1
	As $-1 < -\frac{2}{3} < 1$.	R1

(b)
$$u_1 = -\frac{6}{-\frac{2}{3}}$$
 (A1) for finding u_1
 $u_1 = 9$ (A1) for correct value
 $S_{\infty} = \frac{u_1}{1-r}$
 $S_{\infty} = \frac{9}{1-\left(-\frac{2}{3}\right)}$ (A1) for substitution
 $S_{\infty} = \frac{27}{5}$ A1
[4]

3

Exercise 12

- 1. The first three terms of an infinite geometric sequence are $\frac{10}{r}$, 10, 10*r*, where *r* is the common ratio. The two possible values of *r* are $\frac{1}{2}$ and -2.
 - (a) State which value of r leads to this sum **and** justify your answer.
 - (b) Hence, calculate the sum of the sequence.

[4]

[2]

[3]

[2]

- 2. The first three terms of an infinite geometric sequence are $\frac{27}{r^2}$, $\frac{27}{r}$, 27, where *r* is the common ratio. The two possible values of *r* are 3 and $-\frac{1}{3}$.
 - (a) If the sequence has a finite sum, state which value of r leads to this sum **and** justify your answer.
 - (b) If the sequence does not have a finite sum, find the sum of the first four terms. [4]
- 3. The first three terms of an infinite geometric sequence are $\log_2 x^r$, $\log_2 x^{r^2}$, $\log_2 x^{r^3}$, where *r* is the common ratio. The two possible values of the common ratio *r* are $\frac{1}{2}$ and -2.
 - (a) Consider the value of r such that -1 < r < 1. Find S_{∞} , giving the answer in terms of x.

(b) Consider the value of r such that
$$r < -1$$
. Find S_6 when $x = \frac{1}{2}$.
[4]

4. The first three terms of an infinite geometric sequence are u_1 , $u_2 = m + 2$, $u_3 = 9$, where $m \in \mathbb{Z}$. The two possible values of the common ratio r are $\frac{4}{3}$ and $-\frac{1}{3}$.

- (a) Consider the value of r such that -1 < r < 1. Find m.
- (b) Hence, calculate the sum of the sequence.

Chapter

Complex Numbers

SUMMARY POINTs

SUMMARY POINTs

- ✓ Forms of complex numbers:
 - 1. z = a + bi: Cartesian form
 - 2. $z = r(\cos \theta + i\sin \theta) = r \operatorname{cis} \theta$: Modulus-argument form
 - 3. $z = re^{i\theta}$: Euler form

✓ Properties of moduli and arguments of complex numbers z_1 and z_2 :

1.
$$|z_1 z_2| = |z_1| |z_2|$$

2.
$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$

3.
$$\arg(z_1 z_2) = \arg z_1 + \arg z_2$$

4.
$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$$

✓ If z = a + bi is a root of the polynomial equation p(z) = 0, then $z^* = a - bi$ is also a root of p(z) = 0

Solutions of Chapter 6

19 Paper 1 – Real and Imaginary Parts

Example

(a) Express
$$z = \frac{1}{2+i}$$
 in the form $a+bi$, where $a, b \in \mathbb{Q}$.

(b) Express
$$z^3$$
 in the form $a+bi$, where $a, b \in \mathbb{Q}$.

(c) Hence, write down the imaginary part of
$$z^3$$
. [1]

Solution

(a)
$$\frac{1}{2+i} = \frac{2}{5} - \frac{1}{5}i$$
 A2

(b)
$$z^{3} = \left(\frac{2}{5} - \frac{1}{5}i\right)^{3}$$

 $z^{3} = \frac{2}{125} - \frac{11}{125}i$ A2

(c)
$$-\frac{11}{125}$$
 A1

Exercise 19

1. (a) Express
$$z = \frac{1}{3-4i}$$
 in the form $a+bi$, where $a, b \in \mathbb{Q}$.
(b) Express z^2 in the form $a+bi$, where $a, b \in \mathbb{Q}$.

[2] (c) Hence, write down the real part of
$$z^2$$
.

[1]

[2]

[2]

[2]

2.	z is a	complex number such that $\frac{z}{1-z} = -1 - 0.5i$.	
	(a)	Express z in the form $a+bi$, where a, $b \in \mathbb{Z}$.	[2]
	(b)	Hence, write down the imaginary part of z .	[3]
3.	z is a	complex number such that $2z - 1 - i = 5 + 7i$.	
	(a)	Express z in the form $a+bi$, where a, $b \in \mathbb{Z}$.	[2]
	(b)	Express z^4 in the form $a+bi$, where $a, b \in \mathbb{Z}$.	[2]
	(c)	Hence, write down the real part of z^4 .	[2]
4.	z is a	complex number such that $\frac{z}{5-12i} = \frac{24-7i}{i}$.	
	(a)	Express z in the form $a+bi$, where a, $b \in \mathbb{Z}$.	[0]
	(b)	Express $(i^3 z)^2$ in the form $a + bi$, where $a, b \in \mathbb{Z}$.	[2]
			[2]

(c) Hence, write down the imaginary part of $(i^3 z)^2$.

[1]

6

20 Paper 1 – Moduli and Arguments

Consider the complex number $z = \frac{5i}{3+4i}$, where $z \in \mathbb{C}$.

- (a) Express z in the form a+ib, where $a, b \in \mathbb{Q}$. [2]
- (b) Find the exact value of the modulus of z. [2]
- (c) Find the value of the argument of z.

Solution

Example

(a)
$$z = \frac{5i}{3+4i}$$
$$z = \frac{4}{5} + \frac{3}{5}i$$
 A2

(b) The modulus of z $= \sqrt{\left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2}$ M1 $= \sqrt{1}$

M1

A1

$$=\sqrt{1}$$

=1 A1

(c) The argument of z

$$= \tan^{-1} \left(\frac{\frac{5}{5}}{\frac{4}{5}} \right)$$
$$= \tan^{-1} \left(\frac{3}{4} \right)$$
$$= 0.6435011088 \text{ rad}$$
$$= 0.644 \text{ rad}$$

[2]

[2]

[2]

Exercise 20

1.	Consid	der the complex number $z = \frac{2-i}{2+i}$, where $z \in \mathbb{C}$.	
	(a)	Express z in the form $a+ib$, where a, $b \in \mathbb{Q}$.	
	(b)	Find the exact value of the modulus of z .	[2]
	(c)	Find the value of the argument of z .	[~]
2.	Consid	der the complex number $z = \frac{10}{13} - \frac{24}{13}i$, where $z \in \mathbb{C}$.	[2]
	(a)	Express z^2 in the form $a+ib$, where $a, b \in \mathbb{Q}$.	
	(b)	Find the exact value of the modulus of z^2	[2]
	(0)	The the exact value of the modulus of z .	[2]
	(c)	Find the value of the argument of z^2 .	[2]
3.	Consid	der the complex number $z = \frac{8}{5} - \frac{6}{5}i$, where $z \in \mathbb{C}$.	[2]
	(a)	(i) Express z^3 in the form $a+ib$, where $a, b \in \mathbb{Q}$.	
		(ii) Hence, write down $(z^3)^* + \frac{352}{125}$ in the form $a + ib$, where $a, b \in \mathbb{Q}$.	[2]
	(b)	Find the exact value of the modulus of $(z^3)^* + \frac{352}{125}$.	[3]
	(c)	Write down the exact value of the argument of $(z^3)^* + \frac{352}{125}$.	[2]
4.	The co	omplex numbers z, and z, have arguments between 0 and π radians. Given the	[1] t
	$z_1 + iz$	$z_1 = 0, z_2^2 = -2 - 2\sqrt{a}i$ and $ z_2 = 2$, where $a \in \mathbb{R}$.	·
	(a)	Find the modulus of z	
	(a)	Find the modulus of z_1 .	[2]

- (b) Find the value of *a*. [3]
- (c) Hence, find the argument of z_2^2 .

[2]

59

www.seprodstore.com

6

21 Paper 1 – Argand Diagrams

In the following Argand diagram with the origin O, the point A represents the complex number -4+10i. The shape of OABC is a square.

(a) Determine the complex numbers represented by

- (i) the point B;
- (ii) the point C.
- (b) Hence, find the area of OABC.

A1

Solution

(a) (i)
$$z_B = -4 + 10i + (10 + 4i)$$
 M1

$$z_B = 6 + 14i$$

$$z_c = 0 + 0i + (10 + 4i)$$
 M1

$$z_c = 10 + 4i$$
 A1

(b) The area of OABC

$$= (OA)^{2} M1$$

$$= (\sqrt{(-4)^{2} + 10^{2}})^{2}$$

$$= 116 A1$$

[2]

[4]

[4]

Exercise 21

1. In the following Argand diagram with the origin O, the point A and the point B represent the complex numbers -2+9i and 3-3i respectively. The shape of ABCD is a rectangle such that AD = 2AB.

- (a) Write down
 - (i) $\operatorname{Re}(3-3i) \operatorname{Re}(-2+9i);$
 - (ii) Im(3-3i) Im(-2+9i).
- (b) Find the length of AB.
- (c) Hence, find the area of ABCD.

[2]

[2]

[2]

6

2. In the following Argand diagram with the origin O, the point A represents the complex numbers -18+10i. The shape of ABC is an equilateral triangle with the horizontal side AB = 20. Im(z)

- (a) Determine the complex numbers represented by
 - (i) the point B;
 - (ii) the point C, giving the answer in exact value.
- (b) Find the area of ABC.

[4]

- 3. In an Argand diagram with the origin O, the points A, B, C and D represent the complex numbers z = 4 + 4i, z^* , $\omega = -2 + 2i$ and ω^* respectively.
 - (a) Sketch the points A, B, C and D on the following Argand diagram, and sketch the quadrilateral ABDC.

- (b) Find $\arg(\omega)$. [2]
- (c) Find the area of the quadrilateral ABDC.

[2]

[3]

- 4. In an Argand diagram with the origin O, the points A, B and C represent the complex numbers z = -3+6i, z-6-15i and $(18+9i)^*$ respectively.
 - (a) Sketch the points A, B and C on the following Argand diagram, and sketch the triangle ABC.

- (b) Find $\arg(z-6-15i)$.
- (c) Find the exact area of the triangle ABC.

[2]

Paper 1 – Forms of Complex Numbers

Consider the complex numbers $z_1 = \operatorname{cis} \frac{\pi}{6}$ and $z_2 = 6\operatorname{cis} \frac{2\pi}{3}$.

- (a) Express $z_1 z_2$ in the form
 - (i) $r \operatorname{cis} \theta$;
 - (ii) $re^{i\theta}$. [3]

(b) Hence, find the imaginary part of
$$z_1 z_2$$
.

Solution

(a) (i)
$$z_1 z_2 = \left(\operatorname{cis} \frac{\pi}{6} \right) \left(6 \operatorname{cis} \frac{2\pi}{3} \right)$$

 $z_1 z_2 = (1)(6) \operatorname{cis} \left(\frac{\pi}{6} + \frac{2\pi}{3} \right)$ (M1) for valid approach
 $z_1 z_2 = 6 \operatorname{cis} \frac{5\pi}{6}$ A1

(ii)
$$z_1 z_2 = 6e^{\frac{5\pi}{6}i}$$
 A1

- (b) The imaginary part of $z_1 z_2$
 - $= 6\sin\frac{5\pi}{6}$ (M1) for valid approach = 3 A1 [2]

6

[2]

Exercise 22

1. Consider the complex numbers
$$z_1 = 12 \operatorname{cis} \frac{7\pi}{6}$$
 and $z_2 = 4 \operatorname{cis} \frac{\pi}{2}$.

- (a) Express $\frac{z_1}{z_2}$ in the form
 - (i) $r \operatorname{cis} \theta$;

(ii)
$$re^{i\theta}$$
.

(b) Hence, find the real part of
$$\frac{z_1}{z_2}$$
.

[2]

[3]

2. Consider the complex numbers
$$z_1 = 18\sqrt{3} \operatorname{cis}\left(-\frac{\pi}{6}\right)$$
 and $z_2 = \frac{1}{9} \operatorname{cis}\frac{\pi}{3}$.

- (a) Express $z_1 z_2$ in the form
 - (i) $r \operatorname{cis} \theta$; (ii) $r \operatorname{e}^{\mathrm{i} \theta}$. [3]
- (b) Hence, find the real part of $z_1 z_2$.

[2]

3. Consider the complex numbers $z_1 = 2\operatorname{cis} \frac{\pi}{12}$ and $z_2 = 3\operatorname{cis} \frac{\pi}{4}$.

- (a) (i) Express z_1^2 in the form $r \operatorname{cis} \theta$.
 - (ii) Hence, find the imaginary part of z_1^2 . [4]
- (b) Express $z_1^2 z_2$ in the form
 - (i) $r \operatorname{cis} \theta$;
 - (ii) $re^{i\theta}$. [3]

4. Consider the complex numbers $z_1 = \frac{1}{3} \operatorname{cis} \frac{\pi}{6}$ and $z_2 = \frac{1}{9} \operatorname{cis} \frac{11\pi}{12}$.

- (a) (i) Express z_1^4 in the form $rcis\theta$.
 - (ii) Hence, find the real part of z_1^4 .

[4]

- (b) Express $\frac{z_2}{z_1^4}$ in the form
 - (i) $r \operatorname{cis} \theta$;
 - (ii) $re^{i\theta}$. [3]

6

23 Paper 1 – Complex Roots of Quadratic Equations

Example

A quadratic function is given by $f(x) = x^2 - 6x + 58$. It is given that the range of f(x) is $\{y: y \ge 49\}$.

- (a) Explain why there is no real root for the equation f(x) = 0.
- (b) Find the complex roots of the equation f(x) = 0, giving the answer in the form a+bi, where $a, b \in \mathbb{Q}$.
- (c) If the above two complex roots are located on an Argand diagram, write down the distance between the roots.

[1]

[1]

[3]

Solution

(a) The range of f(x) is $\{y: y \ge 49\}$, means the graph of f(x) does not have any x-intercept. R1 [1]

(b)
$$x^{2}-6x+58=0$$

 $x = \frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(58)}}{2(1)}$ (A1) for substitution
 $x = \frac{6 \pm \sqrt{-196}}{2}$ (A1) for simplification
 $x = \frac{6 \pm \sqrt{196i}}{2}$
 $x = 3 \pm 7i$ A1 [3]
(c) 14 A1 [1]

Exercise 23

- 1. A quadratic function is given by $f(x) = -x^2 + 4x 29$. It is given that the range of f(x) is $\{y: y \le -25\}$.
 - (a) Explain why there is no real root for the equation f(x) = 0.
 - (b) Find the complex roots of the equation f(x) = 0, giving the answer in the form a+bi, where $a, b \in \mathbb{Q}$.
 - (c) If the above two complex roots are located on an Argand diagram, write down the distance between the roots.
- 2. A quadratic function is given by $f(x) = (x+5)^2 + 64$.
 - (a) Explain why there is no real root for the equation f(x) = 0.
 - (b) Find the complex roots of the equation f(x) = 0, giving the answer in the form a+bi, where $a, b \in \mathbb{O}$.
 - (c) If the above two complex roots are located on an Argand diagram, write down the distance between the roots.

[1]

[3]

[1]

[3]

[1]

[1]

6

- 3. A quadratic function is given by $f(x) = ax^2 + bx + c$. It is given that the complex roots of f(x) = 0 are 4+13i and 4-13i.
 - (a) Write down the values of
 - (i) (4+13i)+(4-13i);
 - (ii) (4+13i)(4-13i).
 - (b) Hence, find the expression of f(x), giving the answer in terms of a.

The graph of f(x) passes through (4, 169).

(c) Find the value of a.

[2]

[2]

- 4. A quadratic function is given by $f(x) = ax^2 + bx + c$. It is given that the complex roots of f(x) = 0 are $-\frac{1}{2} + 2i$ and $-\frac{1}{2} 2i$.
 - (a) Write down the values of

(i)
$$\left(-\frac{1}{2}+2i\right)+\left(-\frac{1}{2}-2i\right);$$

(ii)
$$\left(-\frac{1}{2}+2i\right)\left(-\frac{1}{2}-2i\right)$$
.

(b) Hence, find the expression of f(x), giving the answer in terms of a.

The graph of f(x) passes through (0, -17).

(c) Find the value of a.

[2]

[2]

24 Paper 2 – Applications of Complex Numbers

Two alternating current electrical sources are given as $V_1 = 4\cos(4t+0.1)$ and $V_2 = 3\cos 4t$ respectively, where t represents time in seconds. The total voltage V is given by $V = V_1 + V_2$.

- (a) Write down the amplitude of
 - (i) V_1 ;
 - (ii) V_2 . [2]
- (b) Find the period of V_2 .

It is given that $V_1 + V_2 = \operatorname{Re}(e^{4ti}(z+w)), z, w \in \mathbb{C}$.

- (c) Find the expression of z+w. [3]
- (d) Express the following in the form $r(\cos\theta + i\sin\theta)$:
 - (i) *z*
 - (ii) w

(e) It is given that $z + w = Le^{i\alpha}$. Find

- (i) L; (ii) α .
- (f) Using $V_1 + V_2 = \operatorname{Re}(e^{4ti}(z+w))$, express V in the form $A\cos(Bt+C)$, A, B, $C \in \mathbb{R}$.
- (g) Hence, find the total voltage when t = 1.

6

[2]

[2]

[6]

[3]

Solution				
(a)	(i)	4	A1	
	(ii)	3	A1	[2]
(b)	The p	period of V_2		[-]
	$=\frac{2\pi}{4}$	-	(M1) for valid approach	
	$=\frac{\pi}{2}s$	5	A1	
	V I	$I = 4 \cos(4t + 0.1) + 2 \cos(4t)$		[2]
(C)	$V_1 + V_2$	$v_2 = 4\cos(4t+0.1) + 3\cos 4t$		
	$V_1 + V_2$	$V_2 = \operatorname{Re}(4e^{(4i+0.1)i}) + \operatorname{Re}(3e^{4ii})$	(M1) for valid approach	
	$V_1 + V_1$	$V_2 = \operatorname{Re}(4e^{(4t+0.1)i} + 3e^{4ti})$	(A1) for correct approach	
	$V_1 + V_2$	$V_2 = \operatorname{Re}(e^{4i}(4e^{0.1i}+3))$		
	∴ <i>z</i> +	$w = 4e^{0.1i} + 3$	A1	
				[3]
(d)	(i)	$z = 4e^{0.1}$		
		$z = 4(\cos 0.1 + 1\sin 0.1)$	AI	
	(ii)	w = 3		
	(11)	$w = 3(\cos 0 + i\sin 0)$	A1	
				[2]
(e)	(i)	$z + w = 4(\cos 0.1 + i \sin 0.1) + 3(\cos 0 + i \sin 0.1)$	10)	
		$z + w = (4\cos 0.1 + 3\cos 0) + i(4\sin 0.1 + 3\sin 0)$	(M1) for valid approach	
		z + w = 6.980016661 + 0.3993336666i	(A1) for correct values	
		$L = \sqrt{6.980016661^2 + 0.3993336666^2}$	M1	
		L = 6.991430466		
		L = 6.99	A1	
	(ii)	$\alpha = \tan^{-1} \frac{0.3993336666}{1000}$	M1	
	<-/	6.980016661		
		$\alpha = 0.05 / 148693 / \alpha = 0.0571$	A 1	
		$\omega = 0.0571$	7.11 7.11	[6]

(f)
$$V_1 + V_2 = \text{Re}(e^{4i}(z+w))$$

 $V_1 + V_2 = \text{Re}(e^{4i} \cdot 6.991430466e^{0.0571486937i})$ (M1) for substitution
 $V_1 + V_2 = \text{Re}(6.991430466e^{4i+0.0571486937i})$ (A1) for correct approach
 $V_1 + V_2 = 6.991430466\cos(4t + 0.0571486937)$
 $V_1 + V_2 = 6.99\cos(4t + 0.0571)$ A1
[3]
(g) The required total voltage
 $= 6.991430466\cos(4(1) + 0.0571486937)$ (M1) for substitution
 $= -4.260226648 \text{ V}$
 $= -4.26 \text{ V}$ A1

6

[2]

[2]

[2]

[2]

Exercise 24

1. Two sound waves are given as $S_1 = 2\sin(6t - 0.1)$ and $S_2 = 3\sin(6t + 0.25)$ respectively, where S_1 and S_2 represent the amplitudes of the two sound waves respectively, in millimetres, and *t* represents time in seconds. The total amplitude *S* is given by $S = S_1 + S_2$.

(a) Write down the amplitude of

- (i) S_1 ;
- (ii) S_2 .
- (b) Find the period of S_2 .

It is given that $S_1 + S_2 = \operatorname{Im}(e^{6\pi i}(z+w)), z, w \in \mathbb{C}$.

- (c) Find the expression of z+w. [3]
- (d) Express the following in the form $r(\cos \theta + i \sin \theta)$:
 - (i) *z*
 - (ii) w

- (e) It is given that $z + w = Le^{i\alpha}$. Find
 - (i) L;
 - (ii) α . [6]
- (f) Using $S_1 + S_2 = \text{Im}(e^{6ti}(z+w))$, express S in the form $A\sin(Bt+C)$, A, B, $C \in \mathbb{R}$.
- (g) Hence, write down the minimum total amplitude.
- [1]

[3]

[2]

[2]

[2]

- 2. Two waves are given as $W_1 = 5\cos(\pi t 0.9)$ and $W_2 = 7\cos(\pi t 1.3)$ respectively, where W_1 and W_2 represent the amplitudes of the two waves respectively. *t* represents time in seconds. The total amplitude *W* is given by $W = W_1 + W_2$.
 - (a) Write down the amplitude of
 - (i) W_1 ;
 - (ii) W_2 .
 - (b) Find the period of W_2 .

It is given that $W_1 + W_2 = \operatorname{Re}(e^{\pi t i}(z+w)), z, w \in \mathbb{C}$.

Find the expression of z + w. (c) [3] Express the following in the form $r(\cos\theta + i\sin\theta)$: (d) (i) Ζ. (ii) W [2] It is given that $z + w = Le^{i\alpha}$. Find (e) L;(i) (ii) lpha . [6] Using $W_1 + W_2 = \text{Re}(e^{\pi t i}(z+w))$, express W in the form $A\cos(Bt+C)$, A, B, (f) $C \in \mathbb{R}$. [3] Hence, find t when W = 0, 1 < t < 2. (g)

- 3. Two sound waves are given as $S_1 = 8\cos(10t + 0.05)$ and S_2 respectively, where S_1 and S_2 represent the amplitudes of the two sound waves respectively, in millimetres, and *t* represents time in seconds. The total amplitude *S* is given by $S = S_1 + S_2 = 10\cos(10t + 0.15)$.
 - (a) For S, write down its
 - (i) amplitude;
 - (ii) period.

It is given that $S_2 = \operatorname{Re}(e^{10ti}(z-w)), z, w \in \mathbb{C}$.

- (b) Find the expression of z w.
- (c) Express the following in the form $r(\cos \theta + i \sin \theta)$:
 - (i) *z*
 - (ii) w [2]
- (d) It is given that $z w = Le^{i\alpha}$. Find
 - (i) L;
 - (ii) *α*. [6]
- (e) Express S_2 in the form $A\cos(Bt+C)$, $A, B, C \in \mathbb{R}$.
- (f) Hence, find the value of t when $S_2 = 1.5$, 9.5 < t < 10. [2]

[2]

[3]

[3]

6

- 4. Two alternating current electrical sources are given as $V_1 = 7\sin(2\pi t 0.95)$ and V_2 respectively, where *t* represents time in seconds. The total voltage *V* is given by $V = V_1 + V_2 = 6.3\sin(2\pi t 0.5)$.
 - (a) For V_1 , write down its
 - (i) amplitude;
 - (ii) period.

It is given that $V_2 = \text{Im}(e^{2\pi t i}(z-w)), z, w \in \mathbb{C}$.

- (b) Find the expression of z w.
- (c) Express the following in the form $r(\cos\theta + i\sin\theta)$:
 - (i) z
 (ii) w
 [2]
- (d) It is given that $z w = Le^{i\alpha}$. Find
 - (i) L; (ii) α .
- (e) Express V_2 in the form $A\sin(Bt+C)$, A, B, $C \in \mathbb{R}$. [6]
- (f) Hence, find the range of values of t when $V_2 > 2$, $0.5 \le t \le 1.5$.

[3]

[3]

[2]

Chapter

Matrices

SUMMARY POINTs

Terminologies of matrices:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} : \mathbf{A} \ m \times n \text{ matrix with } m \text{ rows and } n \text{ columns}$$

 a_{ij} : Element on the *i* th row and the *j* th column

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$
: Identity matrix
$$\mathbf{0} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
: Zero matrix

SUMMARY POINTs Terminologies of matrices: $\begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} : \text{Diagonal matrix}$ $|\mathbf{A}| = \det(\mathbf{A})$: Determinant of \mathbf{A} **A** is non-singular if $det(\mathbf{A}) \neq 0$ \mathbf{A}^{-1} : Inverse of \mathbf{A} \mathbf{A}^{-1} exists if \mathbf{A} is non-singular For any 2×2 square matrices $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$: \checkmark $|\mathbf{A}| = \det(\mathbf{A}) = ad - bc$: Determinant of A 1. $\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$: Inverse of \mathbf{A} 2. \checkmark Operations of matrices: 1. $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \pm \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} \pm b_{11} & \cdots & a_{1n} \pm b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \pm b_{m1} & \cdots & a_{mn} \pm b_{mn} \end{pmatrix}$ 2. $k \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} ka_{11} & \cdots & ka_{1n} \\ \vdots & \ddots & \vdots \\ ka_{m1} & \cdots & ka_{mn} \end{pmatrix}$ 3. $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$: The element on the *i* th row and the *j* th column of $\mathbf{C} = \mathbf{AB} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nk} \end{pmatrix}$, where **A** and **B** are $m \times n$ and $n \times k$ matrices respectively

SUMMARY POINTs

- A 2×2 system $\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$ can be expressed as AX = B, where $X = \begin{pmatrix} x \\ y \end{pmatrix}$ can be solved by $X = A^{-1}B$
- A 3×3 system $\begin{cases} ax+by+cz = d \\ ex+fy+gz = h \\ ix+jy+kz = l \end{cases}$ can be expressed as $\mathbf{A}\mathbf{X} = \mathbf{B}$, where $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

can be solved by $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$

- ✓ Eigenvalues and eigenvectors of A:
 - 1. $det(\mathbf{A} \lambda \mathbf{I})$: Characteristic polynomial of **A**
 - 2. Solution(s) of det($\mathbf{A} \lambda \mathbf{I}$) = 0: Eigenvalue(s) of \mathbf{A}
 - 3. **v**: Eigenvector of **A** corresponding to the eigenvalue λ , which satisfies $Av = \lambda v$
- ✓ Diagonalization of A:
 - 1. $\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$: Diagonal matrix of the eigenvalues of \mathbf{A}

2.
$$\mathbf{V} = (\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n)$$
: A matrix of the eigenvectors of A

3.
$$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1} \Longrightarrow \mathbf{A}^n = \mathbf{V}\mathbf{D}^n\mathbf{V}^{-1}$$

SUMMARY POINTSTwo-dimensional transformation matrices:1.
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
: Reflection about the x -axis2. $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$: Reflection about the y -axis3. $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$: Reflection about the line $y = mx$, where $m = \tan \theta$ 4. $\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$: Vertical stretch with scale factor k5. $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$: Horizontal stretch with scale factor k6. $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$: Enlargement about the origin with scale factor k7. $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$: Rotation with positive angle θ anticlockwise about the origin8. $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$: Rotation with positive angle θ clockwise about the origin

Solutions of Chapter 7

Example

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 1 \\ -2 & 2 & 0 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 3x^2 & 4x^2 \\ 2x^3 & 3x^3 \end{pmatrix}$.

- (a) Write down det **A**.
- (b) Find det \mathbf{B} . [2]
- (c) Solve the equation $4 \det \mathbf{A} = \det \mathbf{B}$. [2]

Solution

(a)	8	A1	[1]
(b)	$\det \mathbf{B} = (3x^2)(3x^3) - (4x^2)(2x^3)$	(A1) for substitution	[1]
	$\det \mathbf{B} = 9x^5 - 8x^5$ $\det \mathbf{B} = x^5$	A1	
(a)	$4 \det \mathbf{A} = \det \mathbf{P}$	I	[2]
(C)	$\therefore 4(8) = x^5$	(M1) for setting equation	
	$x^5 = 32$		
	x = 2	A1	

[1]

Exercise 25

1. Let
$$\mathbf{A} = \begin{pmatrix} 2 & 4 & 1 \\ -3 & -5 & 3 \\ 1 & 0 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2x^2 & 4 \\ x & x \end{pmatrix}$.

- (b) Find det \mathbf{B} .
- (c) Solve the equation $(11 \det \mathbf{A})x = \det \mathbf{B}$. [2]

[2]

[1]

[2]

[3]

[3]

2. Let
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -1 \\ 0 & 2 & -5 \\ 1 & 0 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1+x & x \\ -2x & 1-x \end{pmatrix}$.

(a) Write down det \mathbf{A} .

(b) Find det **B**.

(c) Solve the equation det \mathbf{A} + det \mathbf{B} - 5x = 0.

3. Let
$$\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 3e^x & e^{2x} \end{pmatrix}$$
.

- (a) Find det \mathbf{A} . [2]
- (b) Solve the equation det $\mathbf{A} 1 = 0$.

4. Let
$$\mathbf{A} = \begin{pmatrix} \ln x & 3 \\ -2 & \ln x \end{pmatrix}$$
.

- (a) Find det \mathbf{A} . [2]
- (b) Solve the equation det $\mathbf{A} = 5 \ln x$, giving the answer(s) in terms of e.

[4]

Example

Let
$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 5 \\ 2 & -3 & -4 \\ 2 & -1 & 0 \end{pmatrix}$$
.

(a) Write down \mathbf{A}^{-1} .

7

It is given that $\mathbf{AB} + \mathbf{I} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & -1 \\ 3 & -3 & 2 \end{pmatrix}$, where **B** and **I** are 3×3 matrices.

Solution

(a)
$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{6} & \frac{5}{24} & \frac{1}{24} \\ \frac{1}{3} & \frac{5}{12} & -\frac{11}{12} \\ -\frac{1}{6} & -\frac{11}{24} & \frac{17}{24} \end{pmatrix}$$
 A2
(b) $\mathbf{AB} + \mathbf{I} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & -1 \\ 3 & -3 & 2 \end{pmatrix}$
 $\mathbf{AB} = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 0 & -1 \\ 3 & -3 & 1 \end{pmatrix}$
 $\mathbf{B} = \mathbf{A}^{-1} \begin{pmatrix} 1 & 3 & 1 \\ 0 & 0 & -1 \\ 3 & -3 & 1 \end{pmatrix}$ (M1) for valid approach

$$\mathbf{B} = \begin{pmatrix} \frac{7}{24} & \frac{3}{8} & 0\\ -\frac{29}{12} & \frac{15}{4} & -1\\ \frac{47}{24} & -\frac{21}{8} & 1 \end{pmatrix}$$
 A2 [3]

Exercise 26

1. Let
$$\mathbf{A} = \begin{pmatrix} -6 & -3 & 1 \\ 1 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$
.

(a) Write down \mathbf{A}^{-1} .

[2]
It is given that
$$\mathbf{AB} + \begin{pmatrix} 1 & -2 & -2 \\ 0 & 1 & 3 \\ -1 & 0 & -3 \end{pmatrix} = 2\mathbf{I}$$
, where **B** and **I** are 3×3 matrices.

(b) Find
$$\mathbf{B}$$
.

2. Let
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$
.

(a) Write down
$$\mathbf{A}^{-1}$$
.

It is given that
$$\mathbf{AB} = \begin{pmatrix} -8 & 5 & 3 \\ 2 & 6 & 7 \\ 5 & -4 & -4 \end{pmatrix} - 5\mathbf{I}$$
, where **B** and **I** are 3×3 matrices.

3. Let
$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 2 \\ -3 & 3 & -4 \\ 2 & 1 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 10 & -7 & 2 \\ 5 & -9 & 6 \\ -4 & 3 & 8 \end{pmatrix}$.
(a) Write down \mathbf{A}^{-1} .

It is given that $\mathbf{A}^{-1}\mathbf{C}\mathbf{A} = \frac{1}{2}\mathbf{B}$, where **C** is a 3×3 matrix.

(b) Find
$$\mathbf{C}$$
.

4. Let
$$\mathbf{A} = \begin{pmatrix} 0 & 4 & 5 \\ 0 & 2 & 3 \\ 1 & -5 & 7 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

(a) Write down
$$\mathbf{A}^{-1}$$
. [2]

It is given that $ACA^{-1} = B^3$, where C is a 3×3 matrix.

(b) Find
$$\mathbf{C}$$
.

[2]

[3]

[3]

7

27 Paper 1 – Systems of Equations

Example

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -5 & -6 \\ 0 & -3 & -2 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 \\ 7 \\ 11 \end{pmatrix}$ and $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

(a) Write down
$$\mathbf{A}^{-1}$$
.

(b) Solve **X** in the equation $\mathbf{A}\mathbf{X} = \mathbf{B}$.

Solution

(a)
$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & \frac{5}{8} & -\frac{3}{8} \\ 0 & \frac{1}{4} & -\frac{3}{4} \\ 0 & -\frac{3}{8} & \frac{5}{8} \end{pmatrix}$$

(b)
$$\mathbf{A}\mathbf{X} = \mathbf{B}$$

 $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$
 $\mathbf{X} = \begin{pmatrix} \frac{9}{4} \\ -\frac{13}{2} \\ \frac{17}{4} \end{pmatrix}$

A2

[2]

[2]

[3]

(M1) for valid approach

A2

Exercise 27

1. Let
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 6 \\ 4 & 5 & 1 \\ 1 & 2 & 4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$ and $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- (a) Write down \mathbf{A}^{-1} . [2]
- (b) Solve **X** in the equation $\mathbf{A}\mathbf{X} = \mathbf{B}$.

2. Let
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & -5 \\ 1 & 2 & -8 \\ 6 & -1 & -3 \end{pmatrix}$$
.

(a) Write down
$$\mathbf{A}^{-1}$$
. [2]
(b) Hence, solve the system
$$\begin{cases} 2x - 5z = 740 \\ x + 2y - 8z = 592 \\ 6x - y - 3z = -444 \end{cases}$$

3. Let
$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 1 \\ 2 & a & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, where $a \in \mathbb{Z}$. It is given that $\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix}$.

(a) Find
$$a$$
.

It is also given that $\mathbf{B} = \begin{pmatrix} 0 \\ 6 \\ 9 \end{pmatrix}$ and $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

(b) Solve **X** in the equation
$$\mathbf{A}\mathbf{X} = \mathbf{B}$$
. [3]

85

[2]

[4]

4. Let
$$\mathbf{A} = \begin{pmatrix} p & 16 & 16 \\ 8 & -8 & q \\ 8 & -16 & -16 \end{pmatrix}$$
, where $p, q \in \mathbb{Z}$. It is given that $\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{16} & 0 & \frac{1}{16} \\ \frac{1}{64} & \frac{1}{16} & -\frac{5}{64} \\ \frac{1}{64} & -\frac{1}{16} & \frac{3}{64} \end{pmatrix}$.

(a) Find p and q.

It is also given that
$$\mathbf{B} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$
 and $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

(b) Solve **X** in the equation $\mathbf{A}\mathbf{X} = \mathbf{B}$.

[3]

The transformation **S** and **T** are represented by the matrices $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$

respectively.

- (a) Find **ST**.
- (b) Describe the transformation represented by **ST**. [1]
- (c) **ST** transforms the point (2, 4) to the point P. Find the coordinates of P.

Solution

(a)
$$\mathbf{ST} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{3} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

 $\mathbf{ST} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$ A2

(b) Rotation anticlockwise of
$$\frac{2\pi}{3}$$
 radians about the origin. A1

(c) $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$

(M1) for valid approach

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4.464101615 \\ -0.2679491924 \end{pmatrix}$$

Thus, the coordinates of P are (-4.46, -0.268). A1

[2]

[2]

[2]

[2]

[1]

7

Exercise 28

- **1.** The transformation **S** and **T** are represented by the matrices $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix}$ respectively.
 - (a) Find **ST**. [2]
 - (b) Describe the transformation represented by **ST**.
 - (c) **ST** transforms the point (3, -5) to the point P. Find the coordinates of P.

[1]

[3]

[2]

[1]

2. The transformation **S** and **T** are represented by the matrices $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ respectively.

- (a) Find **ST**. [2]
- (b) Describe the transformation represented by **ST**.
- (c) **ST** transforms the point P to the point (2, 1). Find the coordinates of P.

3. Let
$$\mathbf{T} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
.

(a) Describe the transformation represented by T.
(b) T transforms the point (4, 4) to the point P. Find the coordinates of P.
[2]
(c) Write down the smallest positive integer n such that Tⁿ = I, where I is a 2×2 identity matrix.

4. Let
$$\mathbf{T} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$
.

- (a) Describe the transformation represented by **T**.
- (b) **T** transforms the point P to the point $(-2, 2\sqrt{3})$. Find the coordinates of P.
- (c) Write down the smallest positive integer *n* such that $\mathbf{T}^n = \mathbf{I}$, where **I** is a 2×2 identity matrix.

[2]

[1]

29 Paper 2 – Eigenvalues and Eigenvectors

Example

The matrix **A** is defined by $\mathbf{A} = \begin{pmatrix} -2 & 1 \\ -5 & 4 \end{pmatrix}$. Let λ_1 and λ_2 be the eigenvalues of **A**, where $\lambda_1 < \lambda_2$.

(a) Find the characteristic polynomial of A. [2]
(b) Hence, write down the values of λ₁ and λ₂. [2]
Let v₁ and v₂ be the eigenvectors of A corresponding to λ₁ and λ₂ respectively. [2]
(c) Write down v₁ and v₂. [2]
It is given that det(A) = αλ₁λ₂, where α ∈ ℝ. [2]

It is given that $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, where **P** is a 2×2 matrix and **D** is a 2×2 diagonal matrix.

- (e) Write down (i) **P**; (ii) \mathbf{D}^n . [3] (f) Hence, express \mathbf{A}^n in terms of n.
 - [3]

Solution

(a)	The characteristic polynomial of $\mathbf{A} = \det(\mathbf{A} - \lambda \mathbf{I})$	
	$= \begin{vmatrix} -2 - \lambda & 1 \\ -5 & 4 - \lambda \end{vmatrix}$	(M1) for valid approach
	$= (-2 - \lambda)(4 - \lambda) - (1)(-5)$ = 8 + 22 - 42 + 2 ² + 5	
	$= -8 + 2\lambda - 4\lambda + \lambda + 3$ $= \lambda^2 - 2\lambda - 3$	A1

- (b) $\lambda_1 = -1, \ \lambda_2 = 3$
- (c) $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$
- (d) $det(\mathbf{A}) = \alpha \lambda_1 \lambda_2$ $\therefore -3 = \alpha(-1)(3)$ (M1) for setting equation $\alpha = 1$ A1

(e) (i)
$$\begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}$$
 A1

(ii)
$$\begin{pmatrix} (-1)^n & 0\\ 0 & 3^n \end{pmatrix}$$
 A

(f)
$$\mathbf{A}^{n} = \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}^{-1}$$
$$\mathbf{A}^{n} = \begin{pmatrix} (-1)^{n} & 3^{n} \\ (-1)^{n} & 5 \cdot 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}^{-1}$$
$$\mathbf{A}^{n} = \begin{pmatrix} (-1)^{n} & 3^{n} \\ (-1)^{n} & 5 \cdot 3^{n} \end{pmatrix} \begin{pmatrix} \frac{5}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{pmatrix}$$
$$\mathbf{A}^{n} = \begin{pmatrix} \frac{5}{4} (-1)^{n} - \frac{1}{4} \cdot 3^{n} & -\frac{1}{4} (-1)^{n} + \frac{1}{4} \cdot 3^{n} \\ \frac{5}{4} (-1)^{n} - \frac{5}{4} \cdot 3^{n} & -\frac{1}{4} (-1)^{n} + \frac{5}{4} \cdot 3^{n} \end{pmatrix}$$

[2]

A2

A2

[2]

7

[2]

[2]

(A1) for correct approach

 $\mathbf{1}$

2

A1

A1

Exercise 29

- 1. The matrix **A** is defined by $\mathbf{A} = \begin{pmatrix} -2 & -3 \\ 1 & 2 \end{pmatrix}$. Let λ_1 and λ_2 be the eigenvalues of **A**, where $\lambda_1 < \lambda_2$.
 - (a) Find the characteristic polynomial of **A**. [2]
 - (b) Hence, write down the values of λ_1 and λ_2 .

Let \mathbf{v}_1 and \mathbf{v}_2 be the eigenvectors of **A** corresponding to λ_1 and λ_2 respectively.

(c) Write down \mathbf{v}_1 and \mathbf{v}_2 .

[2]

It is given that
$$\det(\mathbf{A}) = \frac{\alpha}{\lambda_1 \lambda_2}$$
, where $\alpha \in \mathbb{R}$.

(d) Find α .

[2]

- It is given that $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, where **P** is a 2×2 matrix and **D** is a 2×2 diagonal matrix.
- (e) Write down
 - (i) **P**; (ii) D^n . [3]
- (f) Hence, express \mathbf{A}^n in terms of n.

[3]

- 2. The matrix **A** is defined by $\mathbf{A} = \begin{pmatrix} 9 & -4 \\ 2 & 3 \end{pmatrix}$. Let λ_1 and λ_2 be the eigenvalues of **A**, where $\lambda_1 < \lambda_2$.
 - (a) Find det($\mathbf{A} \lambda \mathbf{I}$), giving the answer in terms of λ .
 - (b) Hence, write down the values of λ_1 and λ_2 .

[2]

Let \mathbf{v}_1 and \mathbf{v}_2 be the eigenvectors of A corresponding to λ_1 and λ_2 respectively.

(c) Write down \mathbf{v}_1 and \mathbf{v}_2 .

It is given that $3\det(\mathbf{A}) + \alpha \lambda_1 \lambda_2 = 0$, where $\alpha \in \mathbb{R}$.

(d) Find α .

It is given that $\mathbf{A}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, where **P** is a 2×2 matrix and **D** is a 2×2 diagonal matrix.

- (e) Write down
 - (i) **P**;
 - (ii) \mathbf{D}^n .

(f) Hence, find \mathbf{A}^{10} , giving the entries in exact values.

- 3. The matrix **M** is defined by $\mathbf{M} = \begin{pmatrix} -1 & \frac{1}{16} \\ -35 & 2 \end{pmatrix}$. Let λ_1 and λ_2 be the eigenvalues of **M**, where $\lambda_1 < \lambda_2$.
 - (a) Find the characteristic polynomial of **M**.
 - (b) Hence, write down the values of λ_1 and λ_2 .

Let \mathbf{v}_1 and \mathbf{v}_2 be the eigenvectors of **M** corresponding to λ_1 and λ_2 respectively.

(c) Write down \mathbf{v}_1 and \mathbf{v}_2 .

It is given that $\mathbf{M}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, where **P** is a 2×2 matrix and **D** is a 2×2 diagonal matrix.

- (d) Write down
 - (i) **P**;
 - (ii) \mathbf{D}^n .

[3]

[2]

[2]

[3]

[3]

[2]

[2]

(e) Hence, express \mathbf{M}^n in terms of n.

Let f(n) be the first diagonal entry of \mathbf{M}^{n} .

(f) Write down $\lim_{n\to\infty} f(n)$.

[1]

[2]

[2]

[2]

[1]

[3]

4. The matrix **M** is defined by $\mathbf{M} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{pmatrix}$. Let λ_1 and λ_2 be the eigenvalues of **M**, where $\lambda_1 < \lambda_2$.

- (a) Find the characteristic polynomial of **M**.
- (b) Hence, write down the values of λ_1 and λ_2 .

Let \mathbf{v}_1 and \mathbf{v}_2 be the eigenvectors of \mathbf{M} corresponding to λ_1 and λ_2 respectively.

(c) Write down \mathbf{v}_1 and \mathbf{v}_2 .

It is given that $\mathbf{M}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}$, where **P** is a 2×2 matrix and **D** is a 2×2 diagonal matrix.

(d) Write down

- (i) **P**;
- (ii) \mathbf{D}^n .
- (e) Hence, express \mathbf{M}^n in terms of n. [3]

[3]

Let g(n) be the last diagonal entry of \mathbf{M}^n .

(f) Write down $\lim_{n\to\infty} g(n)$.

30 Paper 2 – Miscellaneous Problems

The function f is defined by $f(x) = ax^2 + bx + c$, where a, b, $c \in \mathbb{Z}$. It is given that the graph of f passes through (-10, 540), (10, 500) and (20, 1980).

- (a) (i) Show that 100a 10b + c = 540.
 - (ii) Write down the other two equations in a, b and c.

The above three equations can be expressed in a matrix equation AX = B, where A is a

 3×3 matrix, and $\mathbf{X} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and \mathbf{B} are two 3×1 matrices.

(b) Write down

Example

- (i) **A**;
- (ii) **B**;
- (iii) \mathbf{A}^{-1} . [4]
- (c) Hence, find the values of a, b and c.

(d) Find

- (i) the equation of the axis of symmetry;
- (ii) the *y*-coordinate of the vertex.

[3]

[2]

[4]

_	
Sal	lution

(a) (i)
$$540 = a(-10)^2 + b(-10) + c$$
 A1
 $100a - 10b + c = 540$ AG

(ii)
$$100a + 10b + c = 500$$
 A1
 $400a + 20b + c = 1980$ A1

$$400a + 20b + c = 1980$$

(b) (i)
$$\mathbf{A} = \begin{pmatrix} 100 & -10 & 1 \\ 100 & 10 & 1 \\ 400 & 20 & 1 \end{pmatrix}$$
 A1

(ii)
$$\mathbf{B} = \begin{pmatrix} 540\\500\\1980 \end{pmatrix}$$
 A1

(iii)
$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{600} & -\frac{1}{200} & \frac{1}{300} \\ -\frac{1}{20} & \frac{1}{20} & 0 \\ \frac{1}{3} & 1 & -\frac{1}{3} \end{pmatrix}$$
 A2

(c)
$$a = 5$$
, $b = -2$ and $c = 20$
For any one correct answer A1
For all correct answers A1

$$x = -\frac{-2}{2(5)}$$
$$x = \frac{1}{5}$$

A1

(A1) for substitution

The *y*-coordinate of the vertex (ii)

$$=5\left(\frac{1}{5}\right)^{2}-2\left(\frac{1}{5}\right)+20$$
 (M1) for substitution
$$=\frac{99}{5}$$
 A1

[4]

[3]

[4]

Exercise 30

- 1. The function f is defined by $f(x) = ax^2 + bx + c$, where a, b, $c \in \mathbb{Z}$. It is given that the graph of f passes through (50, 3600), (20, -900) and (5, -1125).
 - (a) (i) Show that 2500a + 50b + c = 3600.
 - (ii) Write down the other two equations in a, b and c.

The above three equations can be expressed in a matrix equation AX = B, where A is a

 3×3 matrix, and $\mathbf{X} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and \mathbf{B} are two 3×1 matrices.

- (b) Write down
 - (i) **A**;
 - (ii) **B**;
 - (iii) \mathbf{A}^{-1} . [4]

(c) Hence, find the values of a, b and c.

- (d) Find
 - (i) the x-intercept(s) of the graph of f;
 - (ii) the *y*-coordinate of the vertex.

[5]

[2]

- 2. The function f is defined by $f(x) = ax^3 + bx^2 + cx + d$, where a, b, c, $d \in \mathbb{Z}$. It is given that the graph of f passes through (0, -384), (2, -840), (6, -2520) and (10, -5544).
 - (a) (i) Show that d = -384.
 - (ii) Show that 4a + 2b + c = -228.
 - (iii) Write down the other two equations in a, b and c.

[4]

The above three equations can be expressed in a matrix equation AX = B, where A is a

$$3 \times 3$$
 matrix, and $\mathbf{X} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and \mathbf{B} are two 3×1 matrices.

(b) Write down

- (i) **A**;
- (ii) **B**;
- (iii) \mathbf{A}^{-1} . [4]

(c) Hence, find the values of
$$a$$
, b and c .

- (i) the x-intercept(s) of the graph of f;
- (ii) the y-intercept of the graph of f.

3. Let
$$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}$$
.

- (a) (i) Find \mathbf{M}^2 .
 - (ii) Find \mathbf{M}^3 .
 - (iii) By using the above results, write down \mathbf{M}^{50} . [5]

Let $s(n) = \mathbf{M} + \mathbf{M}^2 + \mathbf{M}^3 + \dots + \mathbf{M}^n$, where $n \ge 1$.

- (b) (i) Write down s(2).
 - (ii) Write down s(3).
 - (iii) By using (b)(i) and (b)(iii), find s(50).

Let $p(n) = \mathbf{M} \times \mathbf{M}^2 \times \mathbf{M}^3 \times \cdots \times \mathbf{M}^n$, where $n \ge 1$.

(c) Find p(50).

[4]

[6]

[2]

[4]

4. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$
.

(a) (i) Find \mathbf{A}^2 .

(ii) Find A^3 .

(iii) By using the above results, write down A^{30} .

Let
$$\mathbf{B} = \mathbf{A} + \begin{pmatrix} 0 & 3 \\ 0 & 1 \end{pmatrix}$$
.

(b) (i) Show that
$$\mathbf{B}^2 = \begin{pmatrix} 1 & 21 \\ 0 & 4 \end{pmatrix}$$
.

(ii) Find \mathbf{B}^3 .

It is given that \mathbf{B}^4 can be expressed as $\begin{pmatrix} 1 & 7+14+28+56 \\ 0 & 16 \end{pmatrix}$.

(iii) Find
$$\mathbf{B}^{30}$$
.
(c) Explain why det $(\mathbf{B}^n) = \det(\mathbf{A}^n) + \det\left(\begin{pmatrix} 0 & 3\\ 0 & 1 \end{pmatrix}^n\right)$ is not always true for $n \ge 1$,
 $n \in \mathbb{Z}$.

7

[1]