Analysis and Approaches Higher Level for IBDP Mathematics Practice Paper Set 1 – Paper 3 (60 Minutes)

Question – Answer Book

Instructions

- 1. Attempt ALL questions. Write your answers in the spaces provided in this Question Answer Book.
- 2. A graphic display calculator is needed.
- **3.** You are suggested to prepare a formula booklet of Analysis and Approaches for IBDP Mathematics when attempting the questions.
- 4. Supplementary answer sheets and graph papers will be supplied on request.
- 5. Unless otherwise specified, ALL working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
- 7. The diagrams in this paper are **NOT** necessarily drawn to scale.
- 8. Information to be read before you start the exam:

	Marker's	Examiner's	
	Use Only	Use Only	
Question	Marks	Marks	Maximum
Number			Mark
1			27
2			28
Overall			
Paper 3			55
Total			55

1. You are asked to investigate the difference between the area of a unit circle and the area of an inscribed polygon.

An inscribed equilateral triangle PQR is constructed in a unit circle, as shown in the following diagram:

Let A_1 be the difference between the area of the unit circle and the area of the equilateral triangle PQR.

(ii) Show that
$$A_1$$
 can be expressed as $\left(\frac{1}{2}+1\right)\left(\frac{2\pi}{3}-\sin\frac{2\pi}{3}\right)$.

[4]

The points Q_1 and R_1 are constructed on the arc PQ and PR respectively such that $PQ_1 = Q_1Q = RR_1 = R_1P$, as shown in the following diagram:

Let A_2 be the difference between the area of the unit circle and the area of the inscribed pentagon PQ₁QRR₁.

- (b) (i) Write down $Q_1 \hat{O} Q$.
 - (ii) Write down the exact area of the triangle $Q_i OQ$ in terms of π .

(iii) Hence, show that
$$A_2 = \frac{1}{2} \left(\frac{2\pi}{3} - \sin \frac{2\pi}{3} \right) + 2 \left(\frac{\pi}{3} - \sin \frac{\pi}{3} \right).$$
 [5]

The points Q_1 , Q_2 and R_1 , R_2 are constructed on the arc PQ and PR respectively such that $PQ_1 = Q_1Q_2 = Q_2Q = RR_1 = R_1R_2 = R_2P$, as shown in the following diagram:

Let A_3 be the difference between the area of the unit circle and the area of the inscribed heptagon $PQ_1Q_2QRR_1R_2$.

- (c) (i) Find $Q_2 \hat{O} Q$.
 - (ii) Express A_3 in the form similar to the expression of A_2 in (b)(iii).

[6]

The points $Q_1, ..., Q_{n-1}$ and $R_1, ..., R_{n-1}$ are constructed on the arc PQ and PR respectively such that $PQ_1 = Q_1Q_2 = ... = Q_{n-1}Q = RR_1 = R_1R_2 = ... = R_{n-1}P$.

Let A_n be the difference between the area of the unit circle and the area of the inscribed polygon $PQ_1Q_2...Q_{n-1}QRR_1R_2...R_{n-1}$. It is given that

$$A_n = \frac{1}{2} \left(\frac{2\pi}{3} - \sin \frac{2\pi}{3} \right) + n \cdot f(n), \text{ where } f(n) \text{ is a function of } n.$$

(d) (i) Find f(n).

(ii) Interpret the meaning of f(n) geometrically.

(e) Find
$$\lim_{n\to\infty} f(n)$$
.

It is given that $v < A_n \le u$.

- (f) (i) Write down u.
 - (ii) Find the maximum possible value of v.

[4]

[6]

[2]

- **2.** You are asked to investigate the factorization of a complex polynomial equation of even degree.
 - (a) (i) Solve the quadratic equation $w^2 w + 1 = 0$, giving the roots in the form $\cos \theta + i \sin \theta$, $-\pi < \theta \le \pi$.

(ii) Hence, show that the roots of the equation
$$u^4 - u^2 + 1 = 0$$
 is
 $\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right), \ \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right), \ \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \text{ and}$
 $\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}.$

(iii) Solve the quadratic equation $z^{2n} - z^n + 1 = 0$, giving the roots in the form $\cos \theta + i \sin \theta$.

(b) (i) Express
$$(z - (\cos \theta + i\sin \theta))(z - (\cos(-\theta) + i\sin(-\theta)))$$
 as a quadratic expression of z , giving the answer in terms of z and θ .

$$u^{4} - u^{2} + 1 = \left(u^{2} - 2u\cos\frac{\pi}{6} + 1\right)\left(u^{2} - 2u\cos\frac{5\pi}{6} + 1\right).$$

(iii) Express $z^6 - z^3 + 1$ as the product of three quadratic expressions of z.

(iv) Assume that *n* is even. Suggest an expression for

$$z^{2n} - z^n + 1 = 0$$
 as the product of *n* quadratic expressions of *z*. [9]

(c) By using (b)(ii), verify that
$$\cos \frac{\pi}{6} \cos \frac{5\pi}{6} = -\frac{3}{4}$$
.

[3]

[12]

(d) Find
$$\cos \frac{\pi}{9} \cos \frac{5\pi}{9} \cos \frac{7\pi}{9}$$
. [4]

© SE Production Limited All Rights Reserved 2021