Analysis and Approaches Higher Level for IBDP Mathematics Practice Paper Set 1 - Paper 3 (60 Minutes)

Question - Answer Book

Instructions

1. Attempt ALL questions. Write your answers in the spaces provided in this Question - Answer Book.
2. A graphic display calculator is needed.
3. You are suggested to prepare a formula booklet of Analysis and Approaches for IBDP Mathematics

	Marker's Use Only	Examiner's Use Only	
Question Number	Marks	Marks	Maximum Mark
1			27
2	Overall		
		28	
Paper 3 Total		55	

4. Supplementary answer sheets and graph papers will be supplied on request.
5. Unless otherwise specified, ALL working must be clearly shown.
6. Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
7. The diagrams in this paper are NOT necessarily drawn to scale.
8. Information to be read before you start the exam:

9. You are asked to investigate the difference between the area of a unit circle and the area of an inscribed polygon.

An inscribed equilateral triangle PQR is constructed in a unit circle, as shown in the following diagram:

P, Q and R are fixed point on the circumference such that $Q R$ is horizontal.

Let A_{1} be the difference between the area of the unit circle and the area of the equilateral triangle PQR .
(a) (i) Write down PÔQ.
(ii) Show that A_{1} can be expressed as $\left(\frac{1}{2}+1\right)\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right)$.

The points Q_{1} and R_{1} are constructed on the arc PQ and PR respectively such that $\mathrm{PQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}=\mathrm{RR}_{1}=\mathrm{R}_{1} \mathrm{P}$, as shown in the following diagram:

Let A_{2} be the difference between the area of the unit circle and the area of the inscribed pentagon $\mathrm{PQ}_{1} \mathrm{QRR}_{1}$.
(b) (i) Write down $\mathrm{Q}_{1} \hat{O} \mathrm{Q}$.
(ii) Write down the exact area of the triangle $\mathrm{Q}_{1} \mathrm{OQ}$ in terms of π.
(iii) Hence, show that $A_{2}=\frac{1}{2}\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right)+2\left(\frac{\pi}{3}-\sin \frac{\pi}{3}\right)$.

The points $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and R_{1}, R_{2} are constructed on the arc PQ and PR respectively such that $\mathrm{PQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}=\mathrm{RR}_{1}=\mathrm{R}_{1} \mathrm{R}_{2}=\mathrm{R}_{2} \mathrm{P}$, as shown in the following diagram:

Let A_{3} be the difference between the area of the unit circle and the area of the inscribed heptagon $\mathrm{PQ}_{1} \mathrm{Q}_{2} \mathrm{QRR}_{1} \mathrm{R}_{2}$.
(c) (i) Find $\mathrm{Q}_{2} \hat{\mathrm{O}} \mathrm{Q}$.
(ii) Express A_{3} in the form similar to the expression of A_{2} in (b)(iii).

The points $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n-1}$ and R_{1}, \ldots, R_{n-1} are constructed on the arc PQ and PR respectively such that $\mathrm{PQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\ldots=\mathrm{Q}_{n-1} \mathrm{Q}=\mathrm{RR}_{1}=\mathrm{R}_{1} \mathrm{R}_{2}=\ldots=\mathrm{R}_{n-1} \mathrm{P}$.

Let A_{n} be the difference between the area of the unit circle and the area of the inscribed polygon $\mathrm{PQ}_{1} \mathrm{Q}_{2} \ldots \mathrm{Q}_{n-1} \mathrm{QRR}_{1} \mathrm{R}_{2} \ldots \mathrm{R}_{n-1}$. It is given that $A_{n}=\frac{1}{2}\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right)+n \cdot f(n)$, where $f(n)$ is a function of n.
(d) (i) Find $f(n)$.
(ii) Interpret the meaning of $f(n)$ geometrically.
(e) Find $\lim _{n \rightarrow \infty} f(n)$.

It is given that $v<A_{n} \leq u$.
(f) (i) Write down u.
(ii) Find the maximum possible value of v.
\qquad
2. You are asked to investigate the factorization of a complex polynomial equation of even degree.
(a) (i) Solve the quadratic equation $w^{2}-w+1=0$, giving the roots in the form $\cos \theta+\mathrm{i} \sin \theta,-\pi<\theta \leq \pi$.
(ii) Hence, show that the roots of the equation $u^{4}-u^{2}+1=0$ is $\cos \left(-\frac{5 \pi}{6}\right)+\mathrm{i} \sin \left(-\frac{5 \pi}{6}\right), \cos \left(-\frac{\pi}{6}\right)+\mathrm{i} \sin \left(-\frac{\pi}{6}\right), \cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}$ and $\cos \frac{5 \pi}{6}+\operatorname{isin} \frac{5 \pi}{6}$.
(iii) Solve the quadratic equation $z^{2 n}-z^{n}+1=0$, giving the roots in the form $\cos \theta+\mathrm{i} \sin \theta$.
(b) (i) Express $(z-(\cos \theta+\mathrm{i} \sin \theta))(z-(\cos (-\theta)+\mathrm{i} \sin (-\theta)))$ as a quadratic expression of z, giving the answer in terms of z and θ.
(ii) Hence, show that

$$
u^{4}-u^{2}+1=\left(u^{2}-2 u \cos \frac{\pi}{6}+1\right)\left(u^{2}-2 u \cos \frac{5 \pi}{6}+1\right) .
$$

(iii) Express $z^{6}-z^{3}+1$ as the product of three quadratic expressions of z.
(iv) Assume that n is even. Suggest an expression for $z^{2 n}-z^{n}+1=0$ as the product of n quadratic expressions of z.
(c) By using (b)(ii), verify that $\cos \frac{\pi}{6} \cos \frac{5 \pi}{6}=-\frac{3}{4}$.
(d) Find $\cos \frac{\pi}{9} \cos \frac{5 \pi}{9} \cos \frac{7 \pi}{9}$.
\qquad
END OF PAPER

