Formula List of Applications and Interpretation Standard Level for IBDP Mathematics

1 Standard Form

✓ Standard Form:

A number in the form $(\pm)a \times 10^k$, where $1 \le a < 10$ and k is an integer

2 Approximation and Error

✓ Summary of rounding methods:

2.71828	Correct to 3	Correct to 3	
	significant figures	decimal places	
Round off	2.7 2	2.71 8	

Consider a quantity measured as Q and correct to the nearest unit d: $\frac{1}{2}d$: Maximum absolute error $Q - \frac{1}{2}d \le A < Q + \frac{1}{2}d$: Range of the actual value A $Q - \frac{1}{2}d$: Lower bound (Least possible value) of A $Q + \frac{1}{2}d$: Upper bound of A<u>Maximum absolute error</u> Q ×100%: Percentage error

- ✓ The function y = f(x):
 - 1. f(a): Functional value when x = a
 - 2. Domain: Set of values of *x*
 - 3. Range: Set of values of *y*

- ✓ Properties of rational function $y = \frac{ax+b}{cx+d}$:
 - 1. $y = \frac{1}{x}$: Reciprocal function
 - 2. $y = \frac{a}{c}$: Horizontal asymptote
 - 3. $x = -\frac{d}{c}$: Vertical asymptote

✓ Variations:

- 1. $y = kx, k \neq 0$: y is directly proportional to x
- 2. $y = \frac{k}{x}, k \neq 0$: y is inversely proportional to x

4 Quadratic Functions

✓ General form $y = ax^2 + bx + c$, where $a \neq 0$:

<i>a</i> > 0	The graph opens upward	
<i>a</i> < 0	The graph opens downward	
С	y -intercept	
$h = -\frac{b}{2a}$	x -coordinate of the vertex	
$h = ah^2 + bh + a$	y -coordinate of the vertex	
$\kappa = an + bn + c$	Extreme value of y	
x = h	Equation of the axis of symmetry	

✓ Other forms:

- 1. $y = a(x-h)^2 + k$: Vertex form
- 2. y = a(x-p)(x-q): Factored form with x-intercepts p and q

$$\checkmark \qquad h = -\frac{b}{2a} = \frac{p+q}{2}$$

✓ The *x*-intercepts of the quadratic function $y = ax^2 + bx + c$ are the roots of the corresponding quadratic equation $ax^2 + bx + c = 0$

5 Exponential and Logarithmic Functions

- ✓ $y = a^x$: Exponential function, where $a \neq 1$
- \checkmark $y = \log_a x$: Logarithmic function, where a > 0
- \checkmark $y = \log x = \log_{10} x$: Common Logarithmic function
- ✓ $y = \ln x = \log_e x$: Natural Logarithmic function, where e = 2.71828... is an exponential number
- ✓ Properties of the graphs of $y = a^x$:

<i>a</i> >1	0 < <i>a</i> < 1	
y -inter	cept=1	
y increases as x increases	y decreases as x increases	
y tends to zero as x tends to	y tends to zero as x tends to	
negative infinity	positive infinity	
Horizontal asymptote: $y = 0$		

$$\checkmark \qquad \begin{cases} ax + by = c \\ dx + ey = f \end{cases} : 2 \times 2 \text{ system}$$

$$\checkmark \qquad \begin{cases} ax + by + cz = d \\ ex + fy + gz = h : 3 \times 3 \text{ system} \\ ix + jy + kz = l \end{cases}$$

✓ The above systems can be solved by PlySmlt2 in TI-84 Plus CE

7 Arithmetic Sequences

- ✓ Properties of an arithmetic sequence u_n :
 - 1. u_1 : First term
 - 2. $d = u_2 u_1 = u_n u_{n-1}$: Common difference
 - 3. $u_n = u_1 + (n-1)d$: General term (*n* th term)

4.
$$S_n = \frac{n}{2} [2u_1 + (n-1)d] = \frac{n}{2} [u_1 + u_n]$$
: The sum of the first *n* terms

$$\checkmark \qquad \sum_{r=1}^{n} u_r = u_1 + u_2 + u_3 + \dots + u_{n-1} + u_n$$
: Summation sign

- ✓ Properties of a geometric sequence u_n :
 - 1. u_1 : First term
 - 2. $r = u_2 \div u_1 = u_n \div u_{n-1}$: Common ratio
 - 3. $u_n = u_1 \times r^{n-1}$: General term (*n* th term)

4.
$$S_n = \frac{u_1(1-r^n)}{1-r}$$
: The sum of the first *n* terms

9 Financial Mathematics

- ✓ Compound Interest:
 - PV : Present value
 - *r*% : Interest rate per annum (per year)
 - *n*: Number of years
 - k: Number of compounded periods in one year

$$FV = PV\left(1 + \frac{r}{100k}\right)^{kn}$$
: Future value

I = FV - PV: Interest

- Inflation: i%: Inflation rate R%: Interest rate compounded yearly (R-i)%: Real rate
- ✓ Annuity:

✓

1. Payments at the beginning of each year

2. Payments at the end of each year

$$-Pmt -Pmt \cdots -Pmt -Pmt$$

$$0 \qquad FV$$

✓ Amortization:

1. Payments at the beginning of each year

2. Payments at the end of each year

✓ Consider the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a *x* - *y* plane:

1.
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
: Slope of *PQ*

2.
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
: Distance between *P* and *Q*

3.
$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$
: Mid-point of *PQ*

- ✓ Consider the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ on a x y z plane:
 - 1. z -axis: The axis perpendicular to the x y plane

2.
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
: Distance between *P* and *Q*

3.
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$
: Mid-point of *PQ*

 \checkmark Forms of straight lines with slope *m* and *y*-intercept *c*:

- 1. y = mx + c: Slope-intercept form
- 2. Ax + By + C = 0: General form
- \checkmark Ways to find the *x*-intercept and the *y*-intercept of a line:
 - 1. Substitute y = 0 and make x the subject to find the x-intercept
 - 2. Substitute x = 0 and make y the subject to find the y-intercept

11 Voronoi Diagrams

Elements in Voronoi Diagrams:
 Site: A given point
 Cell of a site: A collection of points which is closer to the site than other sites
 Boundary: A line dividing the cells
 Vertex: An intersection of boundaries

✓ Related problems:

- 1. Nearest neighbor interpolation
- 2. Incremental algorithm
- 3. Toxic waste dump problem

✓ Properties of a general trigonometric function $y = A \sin B(x - C) + D$:

1.
$$A = \frac{y_{\text{max}} - y_{\text{min}}}{2}$$
: Amplitude

2.
$$B = \frac{360^{\circ}}{\text{Period}}$$

$$3. \qquad D = \frac{y_{\max} + y_{\min}}{2}$$

4. *C* can be found by substitution of a point on the graph

✓ Properties of graphs of trigonometric functions:

13

2-D Trigonometry

 \checkmark Consider a triangle *ABC*:

1.
$$\frac{\sin A}{a} = \frac{\sin B}{b} \text{ or } \frac{a}{\sin A} = \frac{b}{\sin B}$$
: Sine rule
2.
$$a^2 = b^2 + c^2 - 2bc \cos A$$

or $\cos A = \frac{b^2 + c^2 - a^2}{\cos A}$: Cosine rule

2bc

3.
$$\frac{1}{2}ab\sin C$$
: Area of the triangle *ABC*

✓ Consider a sector *OPRQ* with centre *O*, radius *r* and ∠*POQ* = θ° :

$$2\pi r \times \frac{\theta^{\circ}}{360^{\circ}}$$
: Arc length *PRQ*
$$\pi r^{2} \times \frac{\theta^{\circ}}{360^{\circ}}$$
: Area of the sector *OPRQ*
$$\pi r^{2} \times \frac{\theta^{\circ}}{360^{\circ}} - \frac{1}{2}r^{2}\sin\theta^{\circ}$$
: Area of the segment *PRQ*

14 Areas and Volumes

- $\checkmark \qquad \text{For a cube of side length } l:$
 - 1. $6l^2$: Total surface area
 - 2. l^3 : Volume
- \checkmark For a cuboid of side lengths a, b and c:
 - 1. 2(ab+bc+ac): Total surface area
 - 2. *abc*: Volume
- \checkmark For a prism of height *h* and cross-sectional area *A*:
 - 1. *Ah*: Volume

- \checkmark For a cylinder of height h and radius r:
 - 1. $2\pi r^2 + 2\pi rh$: Total surface area
 - 2. $2\pi rh$: Lateral surface area
 - 3. $\pi r^2 h$: Volume
- \checkmark For a pyramid of height *h* and base area *A*:
 - 1. $\frac{1}{3}Ah$: Volume
- \checkmark For a circular cone of height h and radius r:
 - 1. $l = \sqrt{r^2 + h^2}$: Slant height
 - 2. $\pi r^2 + \pi r l$: Total surface area
 - 3. πrl : Curved surface area
 - 4. $\frac{1}{3}\pi r^2 h$: Volume
- \checkmark For a sphere of radius r:
 - 1. $4\pi r^2$: Total surface area
 - 2. $\frac{4}{3}\pi r^3$: Volume
- \checkmark For a hemisphere of radius r:
 - 1. $3\pi r^2$: Total surface area
 - 2. $2\pi r^2$: Curved surface area
 - 3. $\frac{2}{3}\pi r^3$: Volume

15 Differentiation

- ✓ $\frac{dy}{dx} = f'(x)$: Derivative of the function y = f(x) (First derivative)
- ✓ Rules of differentiation:
 - 1. $f(x) = x^n \Longrightarrow f'(x) = nx^{n-1}$
 - 2. $f(x) = p(x) + q(x) \Longrightarrow f'(x) = p'(x) + q'(x)$
 - 3. $f(x) = cp(x) \Longrightarrow f'(x) = cp'(x)$

- ✓ Relationship between graph properties and the derivatives:
 - 1. f'(x) > 0 for $a \le x \le b$: f(x) is increasing in the interval
 - 2. f'(x) < 0 for $a \le x \le b$: f(x) is decreasing in the interval
 - 3. f'(a) = 0: (a, f(a)) is a stationary point of f(x)
 - 4. f'(a) = 0 and f'(x) changes from positive to negative at x = a: (*a*, *f*(*a*)) is a maximum point of *f*(*x*)
 - 5. f'(a) = 0 and f'(x) changes from negative to positive at x = a: (*a*, *f*(*a*)) is a minimum point of *f*(*x*)
- ✓ Tangents and normals:
 - 1. f'(a): Slope of tangent at x = a
 - 2. $\frac{-1}{f'(a)}$: Slope of normal at x = a
 - 3. y-f(a) = f'(a)(x-a): Equation of tangent at x = a

4.
$$y-f(a) = \left(\frac{-1}{f'(a)}\right)(x-a)$$
: Equation of normal at $x = a$

- ✓ Integrals of a function y = f(x):
 - 1. $\int f(x) dx$: Indefinite integral of f(x)
 - 2. $\int_{a}^{b} f(x) dx$: Definite integral of f(x) from *a* to *b*
- ✓ Rules of integration:

1.
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$$

- 2. $\int (p'(x) + q'(x)) dx = p(x) + q(x) + C$
- 3. $\int cp'(x) dx = cp(x) + C$
- ✓ $\int_{a}^{b} f(x) dx$: Area under the graph of f(x) and above the *x*-axis, between x = aand x = b, where $f(x) \ge 0$

- ✓ Trapezoidal Rule: *a*, *b* (*a* < *b*): End points *n*: Number of intervals $h = \frac{b-a}{n}$: Interval width $\int_{a}^{b} f(x) dx \text{ can be estimated by } \frac{1}{2}h[f(x_{0}) + f(x_{n}) + 2(f(x_{1}) + f(x_{2}) + ... + f(x_{n-1}))]$
- ✓ Estimation by Trapezoidal Rule:
 - 1. The estimation overestimates if the estimated value is greater than the actual value of $\int_{a}^{b} f(x) dx$
 - 2. The estimation underestimates if the estimated value is less than the actual value of $\int_{a}^{b} f(x) dx$

17 Statistics

Data	Frequency	Data less than or equal to	Cumulative frequency
10	f_1	10	f_1
20	f_2	20	$f_1 + f_2$
30	f_3	30	$f_1 + f_2 + f_3$

✓ Relationship between frequencies and cumulative frequencies:

- ✓ Measures of central tendency for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:
 - 1. $\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$: Mean
 - 2. The datum or the average value of two data at the middle: Median
 - 3. The datum appears the most: Mode

- ✓ Measures of dispersion for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:
 - 1. $x_n x_1$: Range
 - 2. Two subgroups A and B can be formed from the data set such that all data of the subgroup A are less than or equal to the median, while all data of the subgroup B are greater than or equal to the median
 - 3. Q_1 = The median of the subgroup A: Lower quartile
 - 4. $Q_3 =$ The median of the subgroup B: Upper quartile
 - 5. $Q_3 Q_1$: Inter-quartile range (IQR)

6.
$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$$
: Standard deviation

✓ Box-and-whisker diagram:

- ✓ A datum x is defined to be an outlier if $x < Q_1 1.5$ IQR or $x > Q_3 + 1.5$ IQR
- ✓ Coding of data:
 - 1. Only the mean, the median, the mode and the quartiles will change when each datum of the data set is added or subtracted by a value
 - All measures of central tendency and measures of dispersion will change when each datum of the data set is multiplied or divided by a value

✓ Terminologies:

- 1. U: Universal set
- 2. A: Event
- 3. *x*: Outcome of an event
- 4. n(U): Total number of elements
- 5. n(A): Number of elements in A

- ✓ Formulae for probability:
 - 1. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - 2. P(A') = 1 P(A)
 - 3. $P(A | B) = \frac{P(A \cap B)}{P(B)}$
 - 4. $P(A) = P(A \cap B) + P(A \cap B')$
 - 5. $P(A' \cap B') + P(A \cup B) = 1$
 - 6. $P(A \cup B) = P(A) + P(B)$ and $P(A \cap B) = 0$ if A and B are mutually exclusive
 - 7. $P(A \cap B) = P(A) \cdot P(B)$ and P(A | B) = P(A) if A and B are independent

19 Discrete Probability Distributions

 \checkmark Properties of a discrete random variable X :

X	x_1	x_2	•••	X_n
$\mathbf{P}(X=x)$	$\mathbf{P}(X=x_1)$	$\mathbf{P}(X=x_2)$	•••	$\mathbf{P}(X=x_n)$
$\mathbf{P}(X = x_1) + \mathbf{P}(X)$	$(X = x_2) + \dots + 2$	$P(X = x_n) = 1$		

- 2. $E(X) = x_1 P(X = x_1) + x_2 P(X = x_2) + \dots + x_n P(X = x_n)$: Expected value of X
- 3. E(X) = 0 if a fair game is considered

1.

- Properties of a random variable $X \sim B(n, p)$ following binomial distribution:
 - 1. Only two outcomes from every independent trial (Success and failure)
 - 2. *n*: Number of trials
 - 3. *p* : Probability of success
 - 4. X : Number of successes in n trials
- ✓ Formulae for binomial distribution:
 - 1. $P(X=r) = \binom{n}{r} p^r (1-p)^{n-r} \text{ for } 0 \le r \le n, r \in \mathbb{Z}$
 - 2. E(X) = np: Expected value of X
 - 3. Var(X) = np(1-p): Variance of X
 - 4. $\sqrt{np(1-p)}$: Standard deviation of X
 - 5. $P(X \le r) = P(X < r+1) = 1 P(X \ge r+1)$

Normal Distribution

- ✓ Properties of a random variable $X \sim N(\mu, \sigma^2)$ following normal distribution:
 - 1. *μ* : Mean
 - 2. σ : Standard deviation
 - 3. The mean, the median and the mode are the same
 - 4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
 - 5. $P(X < \mu) = P(X > \mu) = 0.5$
 - 6. The total area under the curve is 1

22 Bivariate Analysis

✓ Correlations:

	Strong	0.75 < <i>r</i> < 1
Positive	Moderate	0.5 < <i>r</i> < 0.75
	Weak	0 < <i>r</i> < 0.5
No		<i>r</i> = 0
	Weak	-0.5 < r < 0
Negative	Moderate	-0.75 < r < -0.5
	Strong	-1 < r < -0.75

where r is the correlation coefficient

✓ Linear regression: y = ax + b: Regression line of y on x

✓ Correlation Coefficient for ranked data:
 r_s: Spearman's Rank Correlation Coefficient

23 Statistical Tests

- ✓ Hypothesis test:
 - H_0 : Null hypothesis
 - H_1 : Alternative hypothesis
 - C: Critical value in the hypothesis test
 - α : Significance level

✓ χ^2 test for independence for a contingency table with *r* rows and *c* columns: *n* = *rc*: Total number of data

 O_i (*i* = 1, 2, ..., *n*): Observed frequencies

 E_i (*i* = 1, 2, ..., *n*): Expected frequencies

v = (r-1)(c-1): Degree of freedom

$$\chi^2_{calc} = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} \colon \chi^2 \text{ test statistic}$$

 H_0 : Two variables are independent

 H_1 : Two variables are not independent

 H_0 is rejected if $\chi^2_{calc} > C$ or the *p*-value is less than the significance level H_0 is not rejected if $\chi^2_{calc} < C$ or the *p*-value is greater than the significance level level

✓ χ^2 goodness of fit test for a contingency table with 1 row and *c* columns: *v* = *c*−1: Degree of freedom

 H_0 : The data follows an assigned distribution

 H_1 : The data does not follow an assigned distribution

 H_0 is rejected if $\chi^2_{calc} > C$ or the p-value is less than the significance level H_0 is not rejected if $\chi^2_{calc} < C$ or the p-value is greater than the significance level

 \checkmark Two sample *t* test:

 $\mu_{\rm l}$, $\,\mu_{\rm 2}$: The population means of two groups of data

 $H_0: \mu_1 = \mu_2$

 $H_1: \ \mu_1 > \mu_2$, $\mu_1 < \mu_2$ (for 1-tailed test), $\mu_1 \neq \mu_2$ (for 2-tailed test)

 H_0 is rejected if the *p*-value is less than the significance level

 H_0 is not rejected if the *p*-value is greater than the significance level

Notes

