Formula List of

Applications and Interpretation

 Standard Level for IBDP Mathematics

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

1 Standard Form
$\checkmark \quad$ Standard Form:
A number in the form $(\pm) a \times 10^{k}$, where $1 \leq a<10$ and k is an integer

2 Approximation and Error

$\checkmark \quad$ Summary of rounding methods:

2.71828	Correct to 3 significant figures	Correct to 3 decimal places
Round off	2.72	2.718

$\checkmark \quad$ Consider a quantity measured as Q and correct to the nearest unit d :
$\frac{1}{2} d$: Maximum absolute error
$Q-\frac{1}{2} d \leq A<Q+\frac{1}{2} d$: Range of the actual value A
$Q-\frac{1}{2} d$: Lower bound (Least possible value) of A
$Q+\frac{1}{2} d$: Upper bound of A
$\frac{\text { Maximum absolute error }}{Q} \times 100 \%$: Percentage error

3 Functions

$\checkmark \quad$ The function $y=f(x)$:

1. $\quad f(a)$: Functional value when $x=a$
2. Domain: Set of values of x
3. Range: Set of values of y
$\checkmark \quad$ Properties of rational function $y=\frac{a x+b}{c x+d}$:
4. $y=\frac{1}{x}$: Reciprocal function
5. $y=\frac{a}{c}$: Horizontal asymptote
6. $x=-\frac{d}{c}$: Vertical asymptote
$\checkmark \quad$ Variations:
7. $y=k x, k \neq 0: y$ is directly proportional to x
8. $y=\frac{k}{x}, k \neq 0: y$ is inversely proportional to x

4 Quadratic Functions

$\checkmark \quad$ General form $y=a x^{2}+b x+c$, where $a \neq 0$:

$a>0$	The graph opens upward
$a<0$	The graph opens downward
c	y-intercept
$h=-\frac{b}{2 a}$	x-coordinate of the vertex
$k=a h^{2}+b h+c$	y-coordinate of the vertex
	Extreme value of y
$x=h$	Equation of the axis of symmetry

$\checkmark \quad$ Other forms:

1. $y=a(x-h)^{2}+k$: Vertex form
2. $y=a(x-p)(x-q)$: Factored form with x-intercepts p and q
$\checkmark \quad h=-\frac{b}{2 a}=\frac{p+q}{2}$
$\checkmark \quad$ The x-intercepts of the quadratic function $y=a x^{2}+b x+c$ are the roots of the corresponding quadratic equation $a x^{2}+b x+c=0$

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

5 Exponential and Logarithmic Functions
$\checkmark \quad y=a^{x}$: Exponential function, where $a \neq 1$
$\checkmark \quad y=\log _{a} x$: Logarithmic function, where $a>0$
$\checkmark \quad y=\log x=\log _{10} x$: Common Logarithmic function
$\checkmark \quad y=\ln x=\log _{e} x$: Natural Logarithmic function, where $e=2.71828 \ldots$ is an exponential number
$\checkmark \quad$ Properties of the graphs of $y=a^{x}$:

$a>1$	y-intercept $=1$
$0<a<1$	
y increases as x increases	y decreases as x increases
y tends to zero as x tends to negative infinity	y tends to zero as x tends to positive infinity
Horizol asymptote: $y=0$	

6 Systems of Equations

$\checkmark \quad\left\{\begin{array}{l}a x+b y=c \\ d x+e y=f\end{array}: 2 \times 2\right.$ system
$\checkmark \quad\left\{\begin{array}{l}a x+b y+c z=d \\ e x+f y+g z=h: 3 \times 3 \text { system } \\ i x+j y+k z=l\end{array}\right.$
$\checkmark \quad$ The above systems can be solved by PlySmlt2 in TI-84 Plus CE

Arithmetic Sequences

$\checkmark \quad$ Properties of an arithmetic sequence u_{n} :

1. u_{1} : First term
2. $d=u_{2}-u_{1}=u_{n}-u_{n-1}$: Common difference
3. $u_{n}=u_{1}+(n-1) d$: General term (nth term)
4. $\quad S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]=\frac{n}{2}\left[u_{1}+u_{n}\right]$: The sum of the first n terms
$\checkmark \quad \sum_{r=1}^{n} u_{r}=u_{1}+u_{2}+u_{3}+\cdots+u_{n-1}+u_{n}$: Summation sign

8 Geometric Sequences

$\checkmark \quad$ Properties of a geometric sequence u_{n} :

1. u_{1} : First term
2. $r=u_{2} \div u_{1}=u_{n} \div u_{n-1}$: Common ratio
3. $u_{n}=u_{1} \times r^{n-1}$: General term (nth term)
4. $\quad S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$: The sum of the first n terms

9 rimasalusamemasis

$\checkmark \quad$ Compound Interest:
$P V$: Present value
$r \%$: Interest rate per annum (per year)
n : Number of years
k : Number of compounded periods in one year
$F V=P V\left(1+\frac{r}{100 k}\right)^{k n}$: Future value
$I=F V-P V$: Interest

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

\checkmark Inflation:
$i \%$: Inflation rate
$R \%$: Interest rate compounded yearly
($R-i$)\%: Real rate
\checkmark Annuity:

1. Payments at the beginning of each year

2. Payments at the end of each year

$\checkmark \quad$ Amortization:
3. Payments at the beginning of each year

4. Payments at the end of each year

10 Coordinate Geometry

$\checkmark \quad$ Consider the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ on a $x-y$ plane:

1. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$: Slope of $P Q$
2. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$: Distance between P and Q
3. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$: Mid-point of $P Q$
$\checkmark \quad$ Consider the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ on a $x-y-z$ plane:
4. z-axis: The axis perpendicular to the $x-y$ plane
5. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$: Distance between P and Q
6. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$: Mid-point of $P Q$
$\checkmark \quad$ Forms of straight lines with slope m and y-intercept c :
7. $y=m x+c$: Slope-intercept form
8. $A x+B y+C=0$: General form
$\checkmark \quad$ Ways to find the x-intercept and the y-intercept of a line:
9. Substitute $y=0$ and make x the subject to find the x-intercept
10. Substitute $x=0$ and make y the subject to find the y-intercept

11 Voronoi Diagrams

$\checkmark \quad$ Elements in Voronoi Diagrams:
Site: A given point
Cell of a site: A collection of points which is closer to the site than other sites
Boundary: A line dividing the cells
Vertex: An intersection of boundaries
$\checkmark \quad$ Related problems:

1. Nearest neighbor interpolation
2. Incremental algorithm
3. Toxic waste dump problem

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

$\left.12\right|_{\text {riomomemer }}$

$\checkmark \quad$ Consider a right-angled triangle ABC :
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$: Pythagoras' Theorem
$\int \sin \theta=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\left\{\cos \theta=\frac{\mathrm{BC}}{\mathrm{AC}}:\right.$ Trigonometric ratios
 $\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\checkmark \quad$ Properties of a general trigonometric function $y=A \sin B(x-C)+D$:

1. $A=\frac{y_{\text {max }}-y_{\text {min }}}{2}$: Amplitude
2. $B=\frac{360^{\circ}}{\text { Period }}$
3. $D=\frac{y_{\text {max }}+y_{\text {min }}}{2}$
4. $\quad C$ can be found by substitution of a point on the graph
$\checkmark \quad$ Properties of graphs of trigonometric functions:

	1.	Amplitude $=1$
	2.	Period $=360^{\circ}$
	3.	$-1 \leq \sin x \leq 1$
	1.	Amplitude $=1$
	2.	Period $=360^{\circ}$
	3.	$-1 \leq \cos x \leq 1$

2-D Trigonometry

$\checkmark \quad$ Consider a triangle $A B C$:

1. $\frac{\sin A}{a}=\frac{\sin B}{b}$ or $\frac{a}{\sin A}=\frac{b}{\sin B}$: Sine rule
2. $a^{2}=b^{2}+c^{2}-2 b c \cos A$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}:$ Cosine rule

3. $\frac{1}{2} a b \sin C$: Area of the triangle $A B C$
$\checkmark \quad$ Consider a sector $O P R Q$ with centre O, radius r and $\angle P O Q=\theta^{\circ}$:
$2 \pi r \times \frac{\theta^{\circ}}{360^{\circ}}$: Arc length $P R Q$
$\pi r^{2} \times \frac{\theta^{\circ}}{360^{\circ}}:$ Area of the sector $O P R Q$
$\pi r^{2} \times \frac{\theta^{\circ}}{360^{\circ}}-\frac{1}{2} r^{2} \sin \theta^{\circ}:$ Area of the segment $P R Q$

14 Areas and Volumes

$\checkmark \quad$ For a cube of side length l :

1. $6 l^{2}$: Total surface area
2. $\quad l^{3}$: Volume
$\checkmark \quad$ For a cuboid of side lengths a, b and c :
3. $2(a b+b c+a c)$: Total surface area
4. $a b c$: Volume
$\checkmark \quad$ For a prism of height h and cross-sectional area A :
5. $A h$: Volume

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

$\checkmark \quad$ For a cylinder of height h and radius r :

1. $2 \pi r^{2}+2 \pi r h$: Total surface area
2. $2 \pi r h$: Lateral surface area
3. $\pi r^{2} h$: Volume
$\checkmark \quad$ For a pyramid of height h and base area A :
4. $\frac{1}{3} A h$: Volume
$\checkmark \quad$ For a circular cone of height h and radius r :
5. $l=\sqrt{r^{2}+h^{2}}$: Slant height
6. $\pi r^{2}+\pi r l$: Total surface area
7. $\pi r l$: Curved surface area
8. $\frac{1}{3} \pi r^{2} h$: Volume
$\checkmark \quad$ For a sphere of radius r :
9. $4 \pi r^{2}$: Total surface area
10. $\frac{4}{3} \pi r^{3}$: Volume
$\checkmark \quad$ For a hemisphere of radius r :
11. $3 \pi r^{2}$: Total surface area
12. $2 \pi r^{2}$: Curved surface area
13. $\frac{2}{3} \pi r^{3}$: Volume

15 Differentiation

$\checkmark \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x)$: Derivative of the function $y=f(x)$ (First derivative)
$\checkmark \quad$ Rules of differentiation:

1. $f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}$
2. $f(x)=p(x)+q(x) \Rightarrow f^{\prime}(x)=p^{\prime}(x)+q^{\prime}(x)$
3. $f(x)=c p(x) \Rightarrow f^{\prime}(x)=c p^{\prime}(x)$
$\checkmark \quad$ Relationship between graph properties and the derivatives:
4. $f^{\prime}(x)>0$ for $a \leq x \leq b: f(x)$ is increasing in the interval
5. $f^{\prime}(x)<0$ for $a \leq x \leq b: f(x)$ is decreasing in the interval
6. $\quad f^{\prime}(a)=0:(a, f(a))$ is a stationary point of $f(x)$
7. $\quad f^{\prime}(a)=0$ and $f^{\prime}(x)$ changes from positive to negative at $x=a$: $(a, f(a))$ is a maximum point of $f(x)$
8. $\quad f^{\prime}(a)=0$ and $f^{\prime}(x)$ changes from negative to positive at $x=a$: ($a, f(a)$) is a minimum point of $f(x)$

Tangents and normals:

1. $f^{\prime}(a)$: Slope of tangent at $x=a$
2. $\frac{-1}{f^{\prime}(a)}$: Slope of normal at $x=a$
3. $y-f(a)=f^{\prime}(a)(x-a)$: Equation of tangent at $x=a$
4. $y-f(a)=\left(\frac{-1}{f^{\prime}(a)}\right)(x-a):$ Equation of normal at $x=a$

16 Integration and Trapezoidal Rule

$\checkmark \quad$ Integrals of a function $y=f(x)$:

1. $\int f(x) \mathrm{d} x$: Indefinite integral of $f(x)$
2. $\int_{a}^{b} f(x) \mathrm{d} x$: Definite integral of $f(x)$ from a to b
$\checkmark \quad$ Rules of integration:
3. $\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}+C$
4. $\int\left(p^{\prime}(x)+q^{\prime}(x)\right) \mathrm{d} x=p(x)+q(x)+C$
5. $\int c p^{\prime}(x) \mathrm{d} x=c p(x)+C$
$\checkmark \quad \int_{a}^{b} f(x) \mathrm{d} x$: Area under the graph of $f(x)$ and above the x-axis, between $x=a$ and $x=b$, where $f(x) \geq 0$

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

$\checkmark \quad$ Trapezoidal Rule:
$a, b(a<b)$: End points
n : Number of intervals
$h=\frac{b-a}{n}$: Interval width
$\int_{a}^{b} f(x) \mathrm{d} x$ can be estimated by $\frac{1}{2} h\left[f\left(x_{0}\right)+f\left(x_{n}\right)+2\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n-1}\right)\right)\right]$
$\checkmark \quad$ Estimation by Trapezoidal Rule:

1. The estimation overestimates if the estimated value is greater than the actual value of $\int_{a}^{b} f(x) \mathrm{d} x$
2. The estimation underestimates if the estimated value is less than the actual value of $\int_{a}^{b} f(x) \mathrm{d} x$

17 samates

$\checkmark \quad$ Relationship between frequencies and cumulative frequencies:

Data	Frequency	Data less than or equal to	Cumulative frequency
10	f_{1}	10	f_{1}
20	f_{2}	20	$f_{1}+f_{2}$
30	f_{3}	30	$f_{1}+f_{2}+f_{3}$

$\checkmark \quad$ Measures of central tendency for a data set $\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right\}$ arranged in ascending order:

1. $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}$: Mean
2. The datum or the average value of two data at the middle: Median
3. The datum appears the most: Mode
$\checkmark \quad$ Measures of dispersion for a data set $\left\{x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right\}$ arranged in ascending order:
4. $x_{n}-x_{1}$: Range
5. Two subgroups A and B can be formed from the data set such that all data of the subgroup A are less than or equal to the median, while all data of the subgroup B are greater than or equal to the median
6. $\quad Q_{1}=$ The median of the subgroup A: Lower quartile
7. $\quad Q_{3}=$ The median of the subgroup B : Upper quartile
8. $\quad Q_{3}-Q_{1}$: Inter-quartile range (IQR)
9. $\sigma=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\left(x_{3}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}}:$ Standard deviation
$\checkmark \quad$ Box-and-whisker diagram:

$\checkmark \quad$ A datum x is defined to be an outlier if $x<Q_{1}-1.5 \mathrm{IQR}$ or $x>Q_{3}+1.5 \mathrm{IQR}$
$\checkmark \quad$ Coding of data:
10. Only the mean, the median, the mode and the quartiles will change when each datum of the data set is added or subtracted by a value
11. All measures of central tendency and measures of dispersion will change when each datum of the data set is multiplied or divided by a value

18 Probability

$\checkmark \quad$ Terminologies:

1. U : Universal set
2. A : Event
3. x : Outcome of an event
4. $n(U)$: Total number of elements
5. $n(A)$: Number of elements in A

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

$\checkmark \quad$ Formulae for probability:

1. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
2. $\mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)$
3. $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$
4. $\mathrm{P}(A)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\prime}\right)$
5. $\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)+\mathrm{P}(A \cup B)=1$
6. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$ and $\mathrm{P}(A \cap B)=0$ if A and B are mutually exclusive
7. $\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$ and $\mathrm{P}(A \mid B)=\mathrm{P}(A)$ if A and B are independent
$\checkmark \quad$ Venn diagram:
8. Region I: $A \cap B$
9. Region II: $A \cap B^{\prime}$
10. Region III: $A^{\prime} \cap B$
11. Region IV: $(A \cup B)^{\prime}$

$\checkmark \quad$ Tree diagram:
12. Path I: $\mathrm{P}(A \cap B)=p q$
13. Path I + Path III:
$=\mathrm{P}(B)$
$=\mathrm{P}(A \cap B)+\mathrm{P}\left(A^{\prime} \cap B\right)$
$=p q+(1-p) r$

19 Discrete Probability Distributions

$\checkmark \quad$ Properties of a discrete random variable X :

X	x_{1}	x_{2}	\ldots	x_{n}
$\mathrm{P}(X=x)$	$\mathrm{P}\left(X=x_{1}\right)$	$\mathrm{P}\left(X=x_{2}\right)$	\ldots	$\mathrm{P}\left(X=x_{n}\right)$

1. $\mathrm{P}\left(X=x_{1}\right)+\mathrm{P}\left(X=x_{2}\right)+\cdots+\mathrm{P}\left(X=x_{n}\right)=1$
2. $\mathrm{E}(X)=x_{1} \mathrm{P}\left(X=x_{1}\right)+x_{2} \mathrm{P}\left(X=x_{2}\right)+\cdots+x_{n} \mathrm{P}\left(X=x_{n}\right)$: Expected value of X
3. $\mathrm{E}(X)=0$ if a fair game is considered

20 Binomial Distribution

$\checkmark \quad$ Properties of a random variable $X \sim \mathrm{~B}(n, p)$ following binomial distribution:

1. Only two outcomes from every independent trial (Success and failure)
2. n : Number of trials
3. p : Probability of success
4. $\quad X$: Number of successes in n trials
$\checkmark \quad$ Formulae for binomial distribution:
5. $\mathrm{P}(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}$ for $0 \leq r \leq n, r \in \mathbb{Z}$
6. $\mathrm{E}(X)=n p$: Expected value of X
7. $\operatorname{Var}(X)=n p(1-p)$: Variance of X
8. $\sqrt{n p(1-p)}$: Standard deviation of X
9. $\mathrm{P}(X \leq r)=\mathrm{P}(X<r+1)=1-\mathrm{P}(X \geq r+1)$

21) Nomomomaratuon

$\checkmark \quad$ Properties of a random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ following normal distribution:

1. μ : Mean
2. σ : Standard deviation
3. The mean, the median and the mode are the same
4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
5. $\quad \mathrm{P}(X<\mu)=\mathrm{P}(X>\mu)=0.5$
6. The total area under the curve is 1

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics

Bivariate Analysis
$\checkmark \quad$ Correlations:

Positive	Strong	$0.75<r<1$
	Moderate	$0.5<r<0.75$
	Weak	$0<r<0.5$
No	$r=0$	
	Weak	$-0.5<r<0$
	Moderate	$-0.75<r<-0.5$
	Strong	$-1<r<-0.75$

where r is the correlation coefficient
$\checkmark \quad$ Linear regression:
$y=a x+b$: Regression line of y on x
$\checkmark \quad$ Correlation Coefficient for ranked data:
r_{s} : Spearman's Rank Correlation Coefficient

23 Statistical Tests

$\checkmark \quad$ Hypothesis test:
H_{0} : Null hypothesis
H_{1} : Alternative hypothesis
C : Critical value in the hypothesis test
α : Significance level
$\checkmark \quad \chi^{2}$ test for independence for a contingency table with r rows and c columns: $n=r c$: Total number of data
$O_{i}(i=1,2, \ldots, n)$: Observed frequencies
$E_{i}(i=1,2, \ldots, n)$: Expected frequencies
$v=(r-1)(c-1)$: Degree of freedom
$\chi_{\text {calc }}^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}: \chi^{2}$ test statistic
H_{0} : Two variables are independent
H_{1} : Two variables are not independent
H_{0} is rejected if $\chi_{\text {calc }}^{2}>C$ or the p-value is less than the significance level H_{0} is not rejected if $\chi_{\text {calc }}^{2}<C$ or the p-value is greater than the significance level
$\checkmark \quad \chi^{2}$ goodness of fit test for a contingency table with 1 row and c columns: $v=c-1$: Degree of freedom
H_{0} : The data follows an assigned distribution
H_{1} : The data does not follow an assigned distribution
H_{0} is rejected if $\chi_{\text {calc }}^{2}>C$ or the p-value is less than the significance level
H_{0} is not rejected if $\chi_{\text {calc }}^{2}<C$ or the p-value is greater than the significance level
$\checkmark \quad$ Two sample t test:
μ_{1}, μ_{2} : The population means of two groups of data
$H_{0}: \mu_{1}=\mu_{2}$
$H_{1}: \mu_{1}>\mu_{2}, \mu_{1}<\mu_{2}$ (for 1-tailed test), $\mu_{1} \neq \mu_{2}$ (for 2-tailed test)
H_{0} is rejected if the p-value is less than the significance level H_{0} is not rejected if the p-value is greater than the significance level

Your Practice Paper - Applications and Interpretation SL for IBDP Mathematics
Notes
\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow

