Your Intensive Notes Analysis and Approaches Standard Level for IBDP Mathematics

Algebra

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

Topics Covered

1 Standard Form Page 3
2 Arithmetic Sequences Page 5
3 Geometric Sequences Page 12
4 Binomial Theorem Page 26
5 Proofs and Identities Page 31

Important Notes

Standard form: A number in the format $\pm a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$ (k is an integer)

Notes on GDC			
TEXAS TI-84 Plus CE	TEXAS TI-Nspire CX mode \rightarrow SCI on the 2nd row to express any number in its standard form Doc \rightarrow Setting \& Status \rightarrow Document Settings... \rightarrow Scientific on the Exponential Format row to express any number in its standard form	CASIO fx-CG50 SHIFT \rightarrow Sci on the Display row its standard form	

Example 1.1

A rectangle is 2376 cm long and 693 cm wide.
(a) Find the diagonal length of the rectangle, giving the answer in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.

The required diagonal length
$=\sqrt{2376^{2}+693^{2}}$
Pythagoras' theorem (A1)
$=2475 \mathrm{~cm}$
$=2.475 \times 10^{3} \mathrm{~cm}$

$$
a=2.475 \& k=3(\mathrm{~A} 1)
$$

(b) Find the area of the rectangle, giving the answer correct to two significant figures and in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.

The required area
$=(2376)(693)$
Base Length \times Height (A1)
$=1646568 \mathrm{~cm}^{2}$
$=1600000 \mathrm{~cm}^{2}$
$=1.6 \times 10^{6} \mathrm{~cm}^{2}$
Round off to 2 sig. fig.
$a=1.6 \& k=6$ (A1)

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

Exercise 1.1

The base length and the height of a right-angled triangle are 1107 mm and 4920 mm respectively.
(a) Find the length of the hypotenuse of the triangle, giving the answer in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.
(b) Using (a), find the perimeter of the triangle, giving the answer correct to two significant figures and in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.
(c) Find the area of the triangle, giving the answer correct to four significant figures and in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.

2
 Arithmetic Sequences

Important Notes

An arithmetic sequence is a sequence such that the next term is generated by adding or subtracting the same number from the previous term.

Properties of an arithmetic sequence $u_{1}, u_{2}, u_{3}, \cdots$:

1. u_{1} : First term
2. $d=u_{2}-u_{1}=u_{n}-u_{n-1}$: Common difference
3. $u_{n}=u_{1}+(n-1) d$: General term (nth term)
4. $\quad S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]=\frac{n}{2}\left[u_{1}+u_{n}\right]$: Sum of the first n terms
$\sum_{r=1}^{n} u_{r}=u_{1}+u_{2}+u_{3}+\cdots+u_{n-1}+u_{n}:$ Summation sign

Notes on GDC		
TEXAS TI-84 Plus CE $y=$ to input the general term \rightarrow 2nd window to set the starting row \rightarrow 2nd graph to find the value of the term needed	TEXAS TI-Nspire CX Graph to input the general term to generate a table \rightarrow ctrl T to generate a table \rightarrow menu 25 to set the starting row to find the value of the term needed	CASIO fx-CG50 Table to input the general term to generate a table \rightarrow F5 to set the starting row \rightarrow F6 to find the value of the term needed

Example 1.2

Consider the arithmetic sequence $15,21,27, \cdots$.
(a) Write down d, the common difference of this sequence.

$$
\begin{align*}
& d=21-15 \\
& d=6 \tag{A1}
\end{align*}
$$

$$
d=u_{2}-u_{1}
$$

(b) Find u_{8}.
$u_{8}=u_{1}+(8-1) d$
$u_{8}=15+(8-1)(6)$
$u_{8}=15+42$
$u_{8}=57$
$u_{n}=u_{1}+(n-1) d$
Correct approach (A1)
(c) Find n such that $u_{n}=75$.
[2]
$u_{n}=75$
$\therefore 15+(n-1)(6)=75$
$6(n-1)=60$
$n-1=10$
$n=11$

Set up an equation

Correct equation (A1)
(d) Find an expression of the sum of the first n terms of this sequence.

The sum of the first n terms
$=S_{n}$
$=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]$
$S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right](\mathrm{M} 1)$
$=\frac{n}{2}[2(15)+(n-1)(6)]$
$u_{1}=15 \quad \& \quad d=6(\mathrm{~A} 1)$
$=\frac{n}{2}(30+6 n-6)$
$=\frac{n}{2}(6 n+24)$
$=3 n^{2}+12 n$
(e) Hence, find the sum of the first ten terms of this sequence.

The required sum
$=S_{10}$
$=3(10)^{2}+12(10)$
$n=10$ (M1)
$=300+120$
$=420$
(A1)

Exercise 1.2

Consider the arithmetic sequence $\frac{39}{10}, \frac{38}{10}, \frac{37}{10}, \cdots$.
(a) Write down d, the common difference of this sequence.
(b) Find u_{12}.
(c) Find n such that $u_{n}=\frac{7}{10}$.
(d) Find an expression of the sum of the first n terms of this sequence.
(e) Hence, find the sum of the first ten terms of this sequence.

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

Example 1.3

Consider the arithmetic sequence with first term 70 and common difference -3.5 . It is given that the r th term of the sequence is zero.
(a) Find r.
$u_{r}=0$
$\therefore 70+(r-1)(-3.5)=0$
$-3.5(r-1)=-70$
$r-1=20$
$r=21$

Set up an equation
Correct equation (A1)
(b) Find the maximum value of the sum of the first n terms of this sequence.

The sum of the first n terms
$=S_{n}$
$=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]$
$S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right](\mathrm{M} 1)$
$=\frac{n}{2}[2(70)+(n-1)(-3.5)]$
$=\frac{n}{2}(140-3.5 n+3.5)$
$=\frac{n(143.5-3.5 n)}{2}$
By considering the graph of $y=\frac{n(143.5-3.5 n)}{2}$,
the coordinates of the maximum point are ($20.5,735.4375$), and the graph passes through $(20,735)$ and $(21,735)$.
Thus, the maximum value is 735 .

GDC approach (M1)
(A1)

Exercise 1.3

Consider the arithmetic sequence with first term 120 and common difference -1.25 . It is given that the m th term of the sequence is zero.
(a) Find m.
(b) Find the maximum value of the sum of the first n terms of this sequence.

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

3 Geometric Sequences

Important Notes

A geometric sequence is a sequence such that the next term is generated by multiplying or being divided by the same number from the previous term.

Properties of a geometric sequence $u_{1}, u_{2}, u_{3}, \cdots$:

1. u_{1} : First term
2. $r=u_{2} \div u_{1}=u_{n} \div u_{n-1}$: Common ratio
3. $u_{n}=u_{1} \times r^{n-1}$: General term (nth term)
4. $\quad S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}$: Sum of the first n terms
5. $S_{\infty}=u_{1}+u_{2}+u_{3}+\cdots+u_{n}+\cdots=\frac{u_{1}}{1-r}$: Sum of infinite number of terms (Sum to infinity), valid only when $-1<r<1$

Properties of compound interest:

1. $\quad P V$: Present value
2. $r \%$: Nominal annual interest rate
3. k : Number of compounded periods in one year
4. n : Number of years
5. $\quad F V=P V\left(1+\frac{r \%}{k}\right)^{k n}:$ Future value
6. $\quad I=F V-P V$: Interest

Notes on GDC		
TEXAS TI-84 Plus CE $y=$ to input the general term \rightarrow 2nd window to set the starting row $\rightarrow 2$ nd graph to find the value of the term needed	TEXAS TI-Nspire CX Graph to input the general term to generate a table \rightarrow ctrl $\mathrm{T}^{\text {to }}$ to generate a table \rightarrow menu 25 to set the starting row to find the value of the term needed	CASIO fx-CG50 Table to input the general term to generate a table \rightarrow F5 to set the starting row \rightarrow F6 to find the value of the term needed

Example 1.4

Consider the sequence $\ln x, a \ln x, \frac{1}{2} \ln x, \cdots, x>0, a \neq 0, x, a \in \mathbb{R}$.
(a) Consider the case where the sequence is arithmetic.
(i) Find a.
[2]

$$
\begin{align*}
& a \ln x-\ln x=\frac{1}{2} \ln x-a \ln x \\
& a-1=\frac{1}{2}-a \\
& 2 a=\frac{3}{2} \\
& a=\frac{3}{4} \tag{A1}
\end{align*}
$$

$$
d=u_{2}-u_{1}=u_{3}-u_{2}(\mathrm{~A} 1)
$$

(ii) Hence, express the common difference in terms of $\ln x$.

The common difference

$$
\begin{align*}
& =\frac{3}{4} \ln x-\ln x \\
& =-\frac{1}{4} \ln x \tag{A1}
\end{align*}
$$

$$
d=u_{2}-u_{1}(\mathrm{~A} 1)
$$

(b) Consider the case where the sequence is geometric.
(i) Find the possible values of a.
$a \ln x \div \ln x=\frac{1}{2} \ln x \div a \ln x$
$r=u_{2} \div u_{1}=u_{3} \div u_{2}(\mathrm{~A} 1)$
$a=\frac{1}{2 a}$
$2 a^{2}=1$
$a^{2}=\frac{1}{2}$
$a=\frac{1}{\sqrt{2}}$ or $a=-\frac{1}{\sqrt{2}}$
(ii) Hence, find an expression of the sum of the first n terms of this sequence if $a>0$, giving the answer in terms of $\ln x$ and 2^{M}, $M \in \mathbb{R}$.

The sum of the first n terms
$=S_{n}$
$=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$
$S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$ (M1)
$=\frac{(\ln x)\left(1-\left(\frac{1}{\sqrt{2}}\right)^{n}\right)}{1-\frac{1}{\sqrt{2}}}$
$u_{1}=\ln x \quad \& \quad r=\frac{1}{\sqrt{2}}(\mathrm{~A} 1)$
$=\frac{(\ln x)\left(1-\left(\frac{1}{2^{0.5}}\right)^{n}\right)}{1-\frac{1}{2^{0.5}}}$
$\sqrt{2}=2^{0.5}(\mathrm{M} 1)$
$=\frac{(\ln x)\left(1-\left(2^{-0.5}\right)^{n}\right)}{1-2^{-0.5}}$
$=\frac{1-2^{-0.5 n}}{1-2^{-0.5}} \ln x$

It is given that $S_{\infty}=2-\sqrt{2}$ when $a<0$.
(iii) Find x.

$$
\begin{array}{ll}
S_{\infty}=2-\sqrt{2} & \text { Set up an equation } \\
\therefore \frac{\ln x}{1-\left(-\frac{1}{\sqrt{2}}\right)}=2-\sqrt{2} & \text { Correct equation (A1) } \\
\ln x=(2-\sqrt{2})\left(1+\frac{1}{\sqrt{2}}\right) & \\
\ln x=2+\sqrt{2}-\sqrt{2}-1 & \text { Simplify the R.H.S. (A1) } \\
\ln x=1 & \text { (A1) }
\end{array}
$$

Consider the sequence $\log x, k \log x, \frac{1}{5} \log x, \cdots, x>0, k \neq 0, x, k \in \mathbb{R}$.
(a) Consider the case where the sequence is arithmetic.
(i) Find k.
(ii) Hence, express the common difference in terms of $\log x$.
(b) Consider the case where the sequence is geometric.
(i) Find the possible values of k.

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

(ii) Hence, find an expression of the sum of the first n terms of this sequence if $k<0$, giving the answer in terms of $\log x$ and 5^{M}, $M \in \mathbb{R}$.

It is given that $S_{\infty}=\frac{5+\sqrt{5}}{2}$ when $k>0$.
(iii) Find x.

Example 1.5

Consider the geometric sequence $\frac{1}{243}, \frac{1}{81}, \frac{1}{27}, \cdots$.
(a) Write down r, the common ratio of this sequence.
$r=\frac{1}{81} \div \frac{1}{243}$
$r=3$
$r=u_{2} \div u_{1}$
(b) Find u_{12}.
$u_{12}=u_{1} \times r^{12-1}$
$u_{n}=u_{1} \times r^{n-1}$
$u_{12}=\frac{1}{243} \times 3^{12-1}$
$u_{1}=\frac{1}{243} \& r=3(\mathrm{~A} 1)$
$u_{12}=729$
(c) Find n such that $u_{n}=81$.
[2]
$u_{n}=81$
Set up an equation
$\therefore \frac{1}{243} \times 3^{n-1}=81$
Correct equation (A1)
$\frac{1}{243} \times 3^{n-1}-81=0$
By considering the graph of $y=\frac{1}{243} \times 3^{n-1}-81$,
the horizontal intercept is 10 .

$$
\begin{equation*}
\therefore n=10 \tag{A1}
\end{equation*}
$$

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

(d) Find an expression of the sum of the first n terms of this sequence.

The sum of the first n terms
$=S_{n}$
$=\frac{u_{1}\left(1-r^{n}\right)}{1-r}$
$S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}(\mathrm{M} 1)$
$=\frac{\frac{1}{243}\left(1-3^{n}\right)}{1-3}$
$u_{1}=\frac{1}{243} \& r=3(\mathrm{~A} 1)$
$=-\frac{1}{486}\left(1-3^{n}\right)$
(e) Hence, find the sum of the first twelve terms of this sequence.

The required sum
$=S_{12}$
$=-\frac{1}{486}\left(1-3^{12}\right)$
$=1093.497942$
$=1090$
(f) Explain why the sum to infinity of this geometric sequence does not exist.

The common ratio is 3 which is not between -1 and 1 .
(g) Find the least value of n such that $S_{n}>10000$.
$S_{n}>10000$
$\therefore-\frac{1}{486}\left(1-3^{n}\right)>10000$
$-\frac{1}{486}\left(1-3^{n}\right)-10000>0$
By considering the graph of
$y=-\frac{1}{486}\left(1-3^{n}\right)-10000$, the graph is above the horizontal axis when $n>14.014543$.
\therefore The least value of n is 15 .
GDC approach (M1)
(A1)

Exercise 1.5

Consider the geometric sequence $\frac{7}{12}, \frac{7}{16}, \frac{21}{48}, \cdots$.
(a) Write down r, the common ratio of this sequence.
(b) Find u_{7}.
(c) Find n such that $u_{n}=\frac{189}{1024}$.

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

(d) Find an expression of the sum of the first n terms of this sequence.
(e) Hence, find the sum of the first fifteen terms of this sequence.
(f) Explain why the sum to infinity of this geometric sequence exists.
(g) Find the greatest value of n such that $S_{n}<2.3315$.

Example 1.6

On 1st January 2024, Judy invests $\$ P$ in an account that pays a nominal annual interest rate of 6%, compounded half-yearly. The amount of money in her account at the end of each year follows a geometric sequence with common ratio R.
(a) Find the exact value of R.

The amount of money after one year

$$
\begin{array}{ll}
=P\left(1+\frac{6 \%}{2}\right)^{(2)(1)} & F V=P V\left(1+\frac{r \%}{k}\right)^{k n}(\mathrm{M} 1) \\
\therefore R=\left(1+\frac{6 \%}{2}\right)^{(2)(1)} & R=\frac{F V}{P V}(\mathrm{~A} 1) \\
R=1.0609 & \text { (A1) }
\end{array}
$$

It is given that there is no further deposit to or any withdrawal from the account.
(b) Find the year in which the amount of money in Judy's account will become double the amount she invested.
$F V=2 P$
$\therefore P\left(1+\frac{6 \%}{2}\right)^{2 n}=2 P$
$\left(1+\frac{6 \%}{2}\right)^{2 n}=2$
$\left(1+\frac{6 \%}{2}\right)^{2 n}-2=0$
By considering the graph of
$y=\left(1+\frac{6 \%}{2}\right)^{2 n}-2$, the horizontal intercept is
11.724886 .
\therefore The required year is 2035 .

GDC approach (M1) (A1)

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

It is given that $P=22000$.
(c) (i) Find the amount that Judy will have in her account after 3 years.

The amount

$$
\begin{array}{ll}
=P V\left(1+\frac{r \%}{k}\right)^{k n} & F V=P V\left(1+\frac{r \%}{k}\right)^{k n}(\mathrm{M} 1) \\
=22000\left(1+\frac{6 \%}{2}\right)^{(2)(3)} & r=6, k=2 \& n=3(\mathrm{~A} 1) \\
=\$ 26269.15052 &
\end{array}
$$

(ii) Hence, find the interest that Judy can earn after 3 years.

The interest

$$
\begin{array}{ll}
=26269.15052-22000 & I=F V-P V(\mathrm{M} 1) \tag{2}\\
=\$ 4269.150524 & \\
=\$ 4270 & (\mathrm{~A} 1)
\end{array}
$$

Starting from 1st January 2024, Judy's friend Cady invests $\$ 16000$ in an account that pays a nominal annual interest rate of 8%, compounded monthly. It is given that the amount of money in Cady's account will exceed that in Judy's account after several years.
(d) Find the minimum number of complete years when the amount of money in Cady's account exceeds that in Judy's account.

Let t be the number of years required for the amount of money in Cady's account exceeding that in Judy's account.
$16000\left(1+\frac{8 \%}{12}\right)^{12 t}>22000\left(1+\frac{6 \%}{2}\right)^{2 t}$
Correct inequality (A1)
$16000\left(1+\frac{8 \%}{12}\right)^{12 t}-22000\left(1+\frac{6 \%}{2}\right)^{2 t}>0$
By considering the graph of
$y=16000\left(1+\frac{8 \%}{12}\right)^{12 t}-22000\left(1+\frac{6 \%}{2}\right)^{2 t}$, the
graph is above the horizontal axis when $t>15.446241$.

GDC approach (M1)
\therefore The minimum number of complete years is 16.
(e) Find the year when the sum of the amount of money in Cady's account and that in Judy's account first reaches $\$ 70000$.

Let T be the number of years required for the sum of the amount of money in Cady's account and that in Judy's account first reaches $\$ 70000$.
$16000\left(1+\frac{8 \%}{12}\right)^{12 T}+22000\left(1+\frac{6 \%}{2}\right)^{2 T} \geq 70000$
Correct inequality (A1)
$16000\left(1+\frac{8 \%}{12}\right)^{12 T}+22000\left(1+\frac{6 \%}{2}\right)^{2 T}-70000 \geq 0$
By considering the graph of
$y=16000\left(1+\frac{8 \%}{12}\right)^{12 T}$
$+22000\left(1+\frac{6 \%}{2}\right)^{2 T}-70000$, the graph is above the horizontal axis when $T>8.9489625$. GDC approach (M1)
\therefore The required year is 2032 .

Exercise 1.6

On 1st January 2025, April invests $\$ P$ in an account that pays a nominal annual interest rate of 8%, compounded quarterly. The amount of money in her account at the end of each year follows a geometric sequence with common ratio R.
(a) Find the exact value of R.

It is given that there is no further deposit to or any withdrawal from the account.
(b) Find the year in which the amount of money in April's account will become 2.5 times the amount she invested.

It is given that $P=10000$.
(c) (i) Find the amount that April will have in her account after 4 years.
(ii) Hence, find the interest that April can earn after 4 years.

Starting from 1st January 2025, April's sister Bea invests $\$ 15000$ in an account that pays a nominal annual interest rate of 3%, compounded half-yearly. It is given that the amount of money in April's account will exceed that in Bea's account after several years.
(d) Find the minimum number of complete years when the amount of money in April's account exceeds that in Bea's account.
(e) Find the year when the sum of the amount of money in April's account and that in Bea's account first reaches $\$ 30500$.

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

4 Binomial Theorem

Important Notes

Properties of factorials and binomial coefficients:

1. $n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot 3 \cdot 2 \cdot 1: n$ factorial
2. $0!=1$
3. $\quad C_{r}^{n}=\frac{n!}{r!(n-r)!}$: Binomial coefficient
4. $\quad C_{0}^{n}=C_{n}^{n}=1$
5. $\quad C_{1}^{n}=C_{n-1}^{n}=n$
6. $\quad C_{r}^{n}=C_{n-r}^{n}$ for $0 \leq r \leq n, r, n \in \mathbb{Z}^{+}$
7. $\quad C_{2}^{n}=\frac{(n)(n-1)}{(2)(1)}$ can be expressed as a fraction in which both numerator and denominator are the product of two numbers, start descending from n and 2 respectively
8. $\quad C_{3}^{n}=\frac{(n)(n-1)(n-2)}{(3)(2)(1)}$ can be expressed as a fraction in which both numerator and denominator are the product of three numbers, start descending from n and 3 respectively

Pascal triangle for finding binomial coefficients:

```
\(n=0\)
\(n=1 \quad 1 \quad 1\)
\(n=2\)
\(n=3\)
\(n=4\)
\(n=5\)
\(\vdots\)
\(n \quad 1 \begin{array}{llllllll}n & 1 & C_{1}^{n} & C_{2}^{n} & \cdots & C_{n-2}^{n} & C_{n-1}^{n} & 1\end{array}\)
```

Properties of binomial theorem:

1. $(a+b)^{n}=a^{n}+C_{1}^{n} a^{n-1} b^{1}+C_{2}^{n} a^{n-2} b^{2}+\cdots+C_{r}^{n} a^{n-r} b^{r}+\cdots+C_{n-1}^{n} a^{1} b^{n-1}+b^{n}$: Binomial theorem for $0 \leq r \leq n, r, n \in \mathbb{Z}^{+}$
2. $\quad C_{r}^{n} a^{n-r} b^{r}$: General term (Term in $\left.b^{r}\right)$

Notes on GDC		
TEXAS TI-84 Plus CE $y=$ to input the general term \rightarrow 2nd window to set the starting row \rightarrow 2nd graph to find the value of the term needed	TEXAS TI-Nspire CX Graph to input the general term to generate a table \rightarrow ctrl to generate a table \rightarrow menu 25 to set the starting row to find the value of the term needed	CASIO fx-CG50 Table to input the general term to generate a table \rightarrow F5 to set the starting row $\rightarrow \mathrm{F} 6$ to find the value of the term needed

Example 1.7

The binomial expansion of $(1+p x)^{n}$ is $1+24 x+q x^{2}+\cdots+4096 x^{6}, n \in \mathbb{Z}^{+}$, $p, q \in \mathbb{R}$. Find the values of n, p and q.

$$
\begin{aligned}
& (1+p x)^{n} \\
& =1^{n}+C_{1}^{n} 1^{n-1}(p x)^{1}+C_{2}^{n} 1^{n-2}(p x)^{2}+\cdots+(p x)^{n} \\
& =1+(n)(1)(p x)+\left(\frac{(n)(n-1)}{(2)(1)}\right)(1)\left(p^{2} x^{2}\right)+\cdots+p^{n} x^{n} \\
& =1+n p x+\frac{n(n-1) p^{2}}{2} x^{2}+\cdots+p^{n} x^{n}
\end{aligned}
$$

$$
C_{1}^{n}=n \& C_{2}^{n}=\frac{n(n-1)}{2}(\mathrm{~A} 1)
$$

The term of the largest power of x is $4096 x^{6}$.

$$
\begin{align*}
& \therefore n=6 \tag{A1}\\
& n p x=24 x \\
& \therefore 6 p x=24 x \\
& p=4 \\
& \frac{n(n-1) p^{2}}{2} x^{2}=q x^{2} \\
& \therefore \frac{6(6-1) 4^{2}}{2} x^{2}=q x^{2} \\
& q=240
\end{align*}
$$

Correct equation (A1)

Correct equation (A1)

Analysis and Approaches Standard Level for IBDP Mathematics - Algebra

Exercise 1.7

The binomial expansion of $(1+p x)^{n}$ is $1+\frac{10}{3} x+\frac{40}{9} x^{2}+q x^{3}+\cdots+p^{n} x^{n}, n \in \mathbb{Z}^{+}$, $p, q \in \mathbb{R}$. Find the values of n, p and q.

Example 1.8

Consider the expansion of $x^{3}\left(2+x^{2}\right)^{n}, n \in \mathbb{Z}^{+}$. The coefficient of x^{5} is 1024 .
(a) Find n.

The general term
$=x^{3} \cdot C_{r}^{n}(2)^{n-r}\left(x^{2}\right)^{r} \quad C_{r}^{n} a^{n-r} b^{r}$ (M1)
$=x^{3} \cdot C_{r}^{n} 2^{n-r} x^{2 r}$
$=C_{r}^{n} 2^{n-r} x^{3+2 r} \quad$ Term in $x^{3+2 r}(\mathrm{~A} 1)$
Consider the term in x^{5}.
$\therefore 3+2 r=5$
Correct equation (A1)
$2 r=2$
$r=1$
$r=1(\mathrm{~A} 1)$
The coefficient of x^{5} is 1024
$\therefore C_{1}^{n} 2^{n-1}=1024$
Correct equation (A1)
$n \cdot 2^{n-1}=1024$
$n \cdot 2^{n-1}-1024=0$
By considering the graph of $y=n \cdot 2^{n-1}-1024$, the horizontal intercept is 8 .
$\therefore n=8$
(b) Hence, find the coefficient of x^{7}.
$x^{3}\left(2+x^{2}\right)^{8}$
$=x^{3}\left[\cdots+C_{2}^{8} 2^{8-2}\left(x^{2}\right)^{2}+\cdots\right]$
$=x^{3}\left[\cdots+1792 x^{4}+\cdots\right]$
$=\cdots+1792 x^{7}+\cdots$
Thus, the coefficient of x^{7} is 1792 .

Exercise 1.8

Consider the expansion of $\frac{\left(1+x^{3}\right)^{n}}{2 x^{2}}, n \in \mathbb{Z}^{+}$. The coefficient of x^{4} is 3 .
(a) Find n.
(b) Hence, find the coefficient of x^{7}.

5 roossond uemetio

Important Notes

Identity of x : The equivalence of two expressions on two sides of the identity sign \equiv, for all values of x

Useful identities and expressions for proofs:

1. $(a+b)^{2} \equiv a^{2}+2 a b+b^{2}$
2. $(a-b)^{2} \equiv a^{2}-2 a b+b^{2}$
3. $(a+b)(a-b) \equiv a^{2}-b^{2}$
4. $x \& x+1$: Two consecutive integers, where $x \in \mathbb{Z}$
5. $2 x+1 \& 2 x+3$: Two consecutive odd numbers, where $x \in \mathbb{Z}$
6. $2 x \& 2 x+2$: Two consecutive even numbers, where $x \in \mathbb{Z}$
7. $a N$: A multiple of a, where $a, N \in \mathbb{Z}$

Example 1.9

(a) Show that $(5 n)^{2}+(5 n+5)^{2}=50 n^{2}+50 n+25, n \in \mathbb{Z}$.
L.H.S.

$$
\begin{aligned}
& =(5 n)^{2}+(5 n+5)^{2} \\
& =25 n^{2}+25 n^{2}+50 n+25 \\
& =50 n^{2}+50 n+25 \\
& =\text { R.H.S. }
\end{aligned}
$$

Starts from L.H.S. (M1)

$$
(a+b)^{2} \equiv a^{2}+2 a b+b^{2}(\mathrm{~A} 1)
$$

$$
\begin{equation*}
\therefore(5 n)^{2}+(5 n+5)^{2}=50 n^{2}+50 n+25 \tag{AG}
\end{equation*}
$$

(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive multiples of 5 is odd.
$5 n$ and $5 n+5$ are consecutive multiples of 5 . Consecutive multiples (R1)
$(5 n)^{2}+(5 n+5)^{2}=50 n^{2}+50 n+25$
Also, $50 n^{2}+50 n+25$ is an odd integer.
Thus, the sum of the squares of any two consecutive multiples of 5 is odd.

Proved in (a) (A1)
$50 n^{2}+50 n$ is even (R1)
(AG)

Exercise 1.9
(a) Show that $(3 n)^{2}+(3 n+3)^{2}=18 n^{2}+18 n+9, n \in \mathbb{Z}$.
(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive multiples of 3 is divisible by 9 .

