SE Production

Lists of Resources when Revising IBDP Mathematics

Math AA Book 1 Solution		Math AI Book 1 Solution	
	CLICK HERE		CLICK HERE
Math AA Book 2 Solution		Math AI Book 2 Solution	
	CLICK HERE		CLICK HERE
Free Last Minute Formula \& Concept List		IBDP Mathematics Exam Info \& Skills	
	CLICK HERE		CLICK HERE
Math \& GDC Skills Video List		More Mock Papers?	
	CLICK HERE		CLICK HERE

Chapter

Functions

SUMMARY POINTs

Odd and even functions:
$f(x)$ is odd if $f(-x)=-f(x)$
$f(x)$ is even if $f(-x)=f(x)$
$f^{-1}(x)$ exists only when $f(x)$ is one-to-one in the restricted domain
Absolute function:
$|f(x)|=\left\{\begin{array}{c}f(x) \text { if } x \geq 0 \\ -f(x) \text { if } x<0\end{array}\right.$

Solutions of Chapter 1

Your Practice Set - Analysis and Approaches for IBDP Mathematics

1 Paper 1 Section A - Absolute Signs

Example

(a) Solve the inequality $|3 x+1|>x+1$.
(b) Solve the inequality $|3 x+1| \geq|x+1|$.

Solution

(a) $|3 x+1|>x+1$
$3 x+1>x+1$ or $3 x+1<-(x+1)$
$3 x+1>x+1$ or $3 x+1<-x-1$
$2 x>0$ or $4 x<-2$
$x>0$ or $x<-\frac{1}{2}$
(b) $\quad|3 x+1| \geq|x+1|$
$|3 x+1|^{2} \geq|x+1|^{2}$
$9 x^{2}+6 x+1 \geq x^{2}+2 x+1$ M1
$8 x^{2}+4 x \geq 0$
$4 x(2 x+1) \geq 0$
$\therefore x \leq-\frac{1}{2}$ or $x \geq 0$

Exercise 1

1. (a) Solve the inequality $|2 x+1| \leq 4 x-1$.
(b) Solve the inequality $|2 x+1|>|4 x-1|$.
2. (a) Solve the inequality $\frac{|x|+1}{3}<2|x|-5$.
(b) Solve the inequality $\left|\frac{x+1}{3}\right|<|2 x-5|$.
3. Let $f(x)=2 x+\frac{3}{x}$, where $x>0$. Solve the inequality $f(|x|)>5$.
4. Let $f(x)=\frac{x^{3}-14 x+8}{x+4}$, where $x<0$. Solve the inequality $f(|x|) \geq|x|+2$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Paper 1 Section A - Absolute Rational Functions

Example
(a) Sketch the graph of $y=\left|\frac{2 x+1}{x-2}\right|$, showing clearly any asymptotes and any points of intersection with the axes.

(b) Solve the equation $\left|\frac{2 x+1}{x-2}\right|=3$.

Solution

(a) For correct asymptotes A1

For correct intercepts
A1
For correct shape

(b) $\quad\left|\frac{2 x+1}{x-2}\right|=3$

$$
\begin{array}{ll}
\frac{2 x+1}{x-2}=3 \text { or } \frac{2 x+1}{x-2}=-3 & \text { M1 } \\
2 x+1=3(x-2) \text { or } 2 x+1=-3(x-2) & \\
2 x+1=3 x-6 \text { or } 2 x+1=-3 x+6 & \\
7=x \text { or } 5 x=5 & \text { A2 } \\
x=7 \text { or } x=1 &
\end{array}
$$

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Exercise 2

1. (a) Sketch the graph of $y=\left|\frac{3 x-1}{1-x}\right|$, showing clearly any asymptotes and any points of intersection with the axes.

(b) Solve the equation $\left|\frac{3 x-1}{1-x}\right|=5$.
2. (a) Sketch the graph of $y=\left|\frac{1-2 x}{x+1}\right|$, showing clearly any asymptotes and any points of intersection with the axes.

(b) It is given that the equation $\left|\frac{1-2 x}{x+1}\right|=k$ has only one solution. Write down the possible values of k.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. The function f is given by $f(x)=\frac{2 x}{2-x}, x \neq 2$. It is given that $f^{-1}(x)=\frac{2 x}{a x+2}$.
(a) Find the value of a.
(b) Sketch the graph of $y=\left|f^{-1}(x)\right|$, showing clearly any asymptotes and any points of intersection with the axes.

4. The function f is given by $f(x)=\frac{1}{3-x}$, where $x>-3, x \neq 3$. On the same coordinate plane, sketch the following graphs, showing clearly any asymptotes and any points of intersection with the axes.
(a) (i) $y=|f(x)|$,
(ii) $\quad y=f(|x|)$.

(b) Write down the number of solutions of the equation $|f(x)|=f(|x|)$ for $-3 \leq x \leq 0$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3 Paper 1 Section A - Odd and Even Functions

Example

The function f and g are defined as $f(x)=x^{6}$ and $g(x)=\sqrt{\sqrt[3]{x}+4}, x \in \mathbb{R}$.
(a) Find the expression of $(g \circ f)(x)$.
(b) Show that $(g \circ f)(x)$ is an even function.
(c) Write down the range of $(g \circ f)(x)$.

Solution

(a) $\quad(g \circ f)(x)=\sqrt{\sqrt[3]{f(x)}+4}$
$(g \circ f)(x)=\sqrt{\sqrt[3]{x^{6}}+4} \quad$ M1
$(g \circ f)(x)=\sqrt{x^{2}+4} \quad$ A1
(b) $\quad(g \circ f)(-x)=\sqrt{(-x)^{2}+4} \quad$ M1
(c) $\{y: y \geq 2\} \quad$ A2A2

$$
\begin{array}{ll}
(g \circ f)(-x)=\sqrt{x^{2}+4} & \text { A1 } \\
(g \circ f)(-x)=(g \circ f)(x) & \\
\text { Thus, }(g \circ f)(x) \text { is an even function. } & \text { AG }
\end{array}
$$

Exercise 3

1. The function f and g are defined as $f(x)=\frac{4 x+1}{\sqrt{x}}$ and $g(x)=4 x^{2}, x \in \mathbb{R}, x>0$.
(a) Find the expression of $(f \circ g)(x)$.
(b) Show that $(f \circ g)(x)$ is an odd function.

It is given that the coordinates of the minimum point of $y=(f \circ g)(x)$ are $(0.25,4)$.
(c) Write down the range of $(f \circ g)(x)$.
2. The function f is defined as $f(x)=x^{4}-x^{2}, x \in \mathbb{R}$.
(a) Show that $f(x)$ is an even function.

The minimum point of f has x-coordinate $-\frac{1}{\sqrt{2}}$ for $x \leq 0$.
(b) Find the range of $f(x)$.
3. The function f is defined as $f(x)=\frac{x}{x^{2}+0.19}, x \in \mathbb{R}$.
(a) Show that $f(x)$ is an odd function.

It is given that $f(a)=a, a \in \mathbb{R}$.
(b) Find the possible values of a.
(c) Write down the equation of the horizontal asymptote of $f(x)$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

4. The function f is defined as $f(x)=\frac{2-5 x}{2-9 x}, x \in \mathbb{R}, x \neq \frac{2}{9}$.
(a) Show that $f(|x|)$ is an even function.
(b) Write down the equation of the horizontal asymptote of $f(|x|)$.
(c) Write down the equations of the vertical asymptotes of $f(|x|)$.

4 Paper 2 Section A - Restricted Domains for f^{-1}

Example

The function f is defined as $f(x)=\left|x^{2}-4\right|-5, x \geq-10$. The domain of f is restricted such that f^{-1} exists.
(a) State the largest possible domain of f.
(b) Find the expression of f^{-1}.
(c) State the domain of f^{-1}.

Solution

(a) $\quad\{x: x \geq 2\}$

A2
(b) $\quad f(x)=\left(x^{2}-4\right)-5$
$y=x^{2}-9$
$\Rightarrow x=y^{2}-9$
(M1) for swapping variables
$x+9=y^{2}$
$y=\sqrt{x+9}$
$\therefore f^{-1}(x)=\sqrt{x+9}$
A1
(c) $\quad\{x: x \geq-5\}$

A1

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Exercise 4

1. The function f is defined as $f(x)=10-2|x-7|, x \geq 0$. The domain of f is restricted such that f^{-1} exists.
(a) State the largest possible domain of f.
(b) Find the expression of f^{-1}.
2. The function f is defined as $f(x)=\left|x^{3}-8\right|, x \leq 20$. The domain of f is restricted such that f^{-1} exists.
(a) State the largest possible domain of f.
(b) Find the expression of f^{-1}.
(c) State the value of $f^{-1}\left(\frac{63}{8}\right)$.
3. The function f is defined as $f(x)=(2 x+1)^{2},-4 \leq x \leq 4$. The domain of f is restricted such that f^{-1} exists.
(a) State the largest possible domain of f.
(b) Find the expression of f^{-1}.
(c) The function g is defined such that $(f \circ g)(x)=(4 x+7)^{2}$. Find a possible expression of $g(x)$.
4. The function f is defined as $f(x)=-(x-3)^{2}+5,-5 \leq x \leq 5$. The domain of f is restricted such that f^{-1} exists.
(a) State the largest possible domain of f.
(b) Find the expression of f^{-1}.
(c) The function g is defined such that $\left(g^{-1} \circ f^{-1}\right)(x)=2 x$. Find the expression of $g(x)$.

5 Paper 1 -More about Function Sketching

Example

The following diagram shows the graph of $y=f(x)$:

It is given that the range of $f(x)$ is $\{y:-1 \leq y \leq 1\}$.

On the same diagram, sketch the graph of $y=\frac{1}{f(x)}$, clearly indicating any asymptotes and axes intercepts.

Solution

$$
\text { For correct } y \text {-intercept A1 }
$$

For correct asymptotesA2

For correct concavity
A2

Exercise 5

1. The following diagram shows the graphs of $y=f(x)$:

On the same diagram, sketch the graph of $y=(f(x))^{2}$, clearly indicating any intercepts and stationary point.
2. The following diagram shows the graphs of $y=f(x)$ and $y=g(x)$:

It is given that the range of $g(x)$ is $\{y: 0 \leq y \leq 1\}$.

On the same diagram, sketch the graph of $y=\frac{g(x)}{f(x)}$, clearly indicating any asymptotes and axes intercepts.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. The following diagram shows the graphs of $y=f(x)$:

On the same diagram, sketch the graph of $y=\sqrt{f(x)}$, clearly indicating any intercepts.
4. The following diagram shows the graphs of $y=f(x)$:

On the same diagram, sketch the graph of $y=\frac{f(x)}{|x|}$, clearly indicating any vertical asymptote and axes intercepts.

Chapter

Polynomials

SUMMARY POINTs

$\checkmark \quad$ Number of roots of the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$: The maximum number of roots of $f(x)=0$ is n

Sum and product of roots of $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$:

1. $r_{1}, r_{2}, \ldots, r_{n}$: Roots
2. $r_{1}+r_{2}+\cdots+r_{n}=-\frac{a_{n-1}}{a_{n}}$
3. $r_{1} r_{2}+r_{1} r_{3}+\cdots+r_{1} r_{n}+r_{2} r_{3}+r_{2} r_{4}+\cdots+r_{2} r_{n}+\cdots+r_{n-1} r_{n}=\frac{a_{n-2}}{a_{n}}$
4. $r_{1} r_{2} r_{3} \cdots r_{n-1} r_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}$

SUMMARY POINTs

$\checkmark \quad$ Factor theorem:
$(x-a)$ is a factor of $f(x)$ if $f(a)=0$
$(p x-q)$ is a factor of $f(x)$ if $f\left(\frac{q}{p}\right)=0$
$\checkmark \quad$ Remainder theorem:
$f(a)$ is the remainder when $f(x)$ is divided by $(x-a)$
$f\left(\frac{q}{p}\right)$ is the remainder when $f(x)$ is divided by $(p x-q)$
$\checkmark \quad$ Partial fractions:

1. $\frac{a x+b}{(c x+d)(e x+f)}$ can be expressed as $\frac{P}{c x+d}+\frac{Q}{e x+f}$
2. $\frac{a x+b}{(c x+d)^{2}}$ can be expressed as $\frac{P}{c x+d}+\frac{Q}{(c x+d)^{2}}$

Solutions of Chapter 2

6 Paper 1 Section A - Remainder Theorem

Example

When the polynomial $2 x^{3}+a x^{2}+b x+1$ is divided by $(x-1)$, the remainder is 9 , and when divided by $(x+2)$, it is 3 . Find the value of a and the value of b, where $a, b \in \mathbb{R}$.

Solution

$$
\begin{array}{ll}
2(1)^{3}+a(1)^{2}+b+1=9 & \text { (M1) for remainder theorem } \\
2+a+b+1=9 & \text { A1 } \\
b=6-a & \\
2(-2)^{3}+a(-2)^{2}+b(-2)+1=3 & \\
-16+4 a-2 b+1=3 & \text { (M1) for substitution } \\
\therefore-16+4 a-2(6-a)+1=3 & \\
-16+4 a-12+2 a+1=3 & \text { A1 } \\
6 a=30 & \\
a=5 & \text { A1 }
\end{array}
$$

Exercise 6

1. When the polynomial $a x^{3}-x^{2}+b x+3$ is divided by $(x+2)$, the remainder is -13 , and when divided by $(x-3)$, it is 27 . Find the value of a and the value of b, where a, $b \in \mathbb{R}$.
2. The same remainder is found when $4 x^{3}-2 k x^{2}-5$ and $3 x^{3}-k^{2} x^{2}+15$ are divided by $x-2$. Find the possible values of k.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. When $4 x^{3}+p x^{2}+q x$ is divided by $x-2$ and $x+2$, the remainders are equal. Given that $p, q \in \mathbb{R}$.
(a) Find the value of q;
(b) Find the set of values of p.
4. Let $f(x)=x^{4}+4 x^{2}-3 x+2$. The remainder when $f(x)$ is divided by $(x-p)$ is q, and the remainder when $f(x)$ is divided by $(x+p)$ is $q+12$, where p and q are constants. Find the value of p and the value of q.

7

Paper 1 Section A - Factor Theorem

Example

The polynomial $P(x)=a x^{3}+6 x^{2}+b x-12$ is divisible by $(x-1)$ and by $(x+4)$. Find the value of a and the value of b, where $a, b \in \mathbb{R}$.

Solution

$$
\begin{array}{ll}
P(1)=0 & \\
a(1)^{3}+6(1)^{2}+b(1)-12=0 & \text { (M1) for factor theore } \\
b=6-a & \text { A1 } \\
P(-4)=0 & \\
a(-4)^{3}+6(-4)^{2}+b(-4)-12=0 & \\
-64 a+96-4 b-12=0 & \text { (M1) for substitution } \\
\therefore-64 a+96-4(6-a)-12=0 & \\
-64 a+96-24+4 a-12=0 & \text { A1 } \\
-60 a=-60 & \\
a=1 & \text { A1 }
\end{array}
$$

Exercise 7

1. The polynomial $f(x)=a x^{3}+b x^{2}-13 x+6$ is divisible by $(x-2)$ and by $(x+3)$. Find the value of a and the value of b, where $a, b \in \mathbb{R}$.
2. The cubic polynomial $x^{3}+p x^{2}+q x+48$ has a factor $(x-4)$ and leaves a remainder 105 when divided by $(x+3)$. Find the value of p and the value of q, where $p, q \in \mathbb{R}$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. Consider the polynomial $p(x)=x^{3}+m x-30$.
(a) Given that $p(x)$ has a factor $(x-5)$, find the value of m.
(b) Hence or otherwise, factorize $p(x)$ as a product of linear factors.
4. Consider the polynomial $q(x)=2 x^{3}+(k+9) x^{2}+k x+(k+1)$. It is given that $q(x)$ has a factor $(x+3)$.
(a) Find the value of k.
(b) Hence or otherwise, factorize $q(x)$ as a product of linear factors.

8
 Paper 1 Section A - Sum and Product of Roots

Example

The equation $3 x^{3}+24 x^{2}+x+5=k$ has roots r_{1}, r_{2} and r_{3}. Given that $r_{1}+r_{2}+r_{3}=r_{1} r_{2} r_{3}$, find the value of k.

Solution

$$
\begin{array}{ll}
3 x^{3}+24 x^{2}+x+5=k & \\
3 x^{3}+24 x^{2}+x+(5-k)=0 & \text { (M1) for valid approach } \\
r_{1}+r_{2}+r_{3}=r_{1} r_{2} r_{3} & \\
\therefore-\frac{24}{3}=-\frac{5-k}{3} & \text { M1A2 } \\
24=5-k & \\
k=-19 & \text { A1 }
\end{array}
$$

Exercise 8

1. The equation $2 x^{3}+30 x^{2}+k x+20=x-5$ has roots r_{1}, r_{2} and r_{3}. Given that $r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}=2 r_{1} r_{2} r_{3}$, find the value of k.
2. The equation $x^{4}+k x^{3}+3 x^{2}+2 x+1=-x^{4}+4 x^{3}+13$ has roots r_{1}, r_{2}, r_{3} and r_{4}. Given that $r_{1} r_{2} r_{3} r_{4}+r_{1}+r_{2}+r_{3}+r_{4}=0$, find the value of k.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. Let $f(x)=6 x^{3}-18 x^{2}+36 x+72, x \in \mathbb{R} . r_{1}, r_{2}$ and r_{3} are the roots of $f(x)=0$.
(a) Find the value of $\frac{1}{r_{1} r_{2}}+\frac{1}{r_{2} r_{3}}+\frac{1}{r_{1} r_{3}}$.

A new polynomial is defined by $g(x)=f(x-3)$.
(b) Find the sum of the roots of the equation $g(x)=0$.
4. Let $g(x)=-x^{3}+71 x^{2}-10 x-15, x \in \mathbb{R} . r_{1}, r_{2}$ and r_{3} are the roots of $g(x)=0$.
(a) Find the value of $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$.

A new polynomial is defined by $h(x)=2 g(x)$.
(b) Find the product of the roots of the equation $h(x)=0$.

Example

The real root of the equation $x^{3}+2 x-5=0$ is 1.3283 , correct to four decimal places. Determine the real root for each of the following.
(a) $(x-5)^{3}+2(x-5)-5=0$
(b) $\frac{1}{8} x^{3}+x-5=0$

Solution

(a) The required real root

$$
\begin{array}{ll}
=1.3283+5 & (\mathrm{M} 1) \text { for valid approach } \\
=6.3283 & \text { A1 }
\end{array}
$$

(b) The required real root
$=2(1.3283)$
$=2.6566$
(M1) for valid approach A1

Exercise 9

1. The real root of the equation $4 x^{3}+19 x^{2}+10 x-50=0$ is 1.25 . Determine the real root for each of the following.
(a) $\quad 4(x+6)^{3}+19(x+6)^{2}+10(x+6)-50=0$
(b) $-4 x^{3}+19 x^{2}-10 x-50=0$

Your Practice Set - Analysis and Approaches for IBDP Mathematics

2. The real root of the equation $4 x^{3}+17 x^{2}+30 x+27=0$ is -2.25 . Determine the real root for each of the following.
(a) $4 x^{3}-17 x^{2}+30 x-27=0$
(b) $108 x^{3}+153 x^{2}+90 x+27=0$
3. Consider the function $f(x)=-x^{4}+4 x^{3}+5 x+3, x \in \mathbb{R}$. The graph of f is translated four units to the right to form the function $g(x)$. Express $g(x)$ in the form $a x^{4}+b x^{3}+c x^{2}+d x+e$, where $a, b, c, d, e \in \mathbb{Z}$.
4. Consider the function $f(x)=2 x^{4}+5 x^{2}-2, x \in \mathbb{R}$. The graph of f is translated one unit to the left and then stretched vertically with scale factor 2 to form the function $g(x)$. Express $g(x)$ in the form $a x^{4}+b x^{3}+c x^{2}+d x+e$, where $a, b, c, d, e \in \mathbb{Z}$.

10

Example

Find the values of r such that the equation $x^{3}-6 x^{2}+9 x=r-3$ has two distinct real solutions.

Solution

$$
\begin{aligned}
& x^{3}-6 x^{2}+9 x=r-3 \\
& x^{3}-6 x^{2}+9 x+3=r
\end{aligned}
$$

(M1) for valid approach
By considering the graph of $y=x^{3}-6 x^{2}+9 x+3$, the local maximum is $(1,7)$ and the local minimum is $(3,3)$. (M1) for valid approach Thus, $r=3$ or $r=7$.

Exercise 10

1. Find the range of values of r such that the equation $-2 x^{3}-3 x^{2}+12 x+r-7=0$ has three distinct real solutions.
2. Find the range of values of k such that the equation $x^{4}-8 x^{3}+16 x^{2}=k-4 x$ has no real solution.
3. Find the range of values of r such that the equation $x^{2}+180=\frac{r+24 x^{2}}{x}$ has at most two distinct real solutions.
4. Find the range of values of k such that the equation $8 x^{2}(2 x+1)=k+192 x+x^{4}$ has four distinct real solutions.

Example

Let $f(x)=\frac{4}{(x-1)(x-6)}, x \neq 1, x \neq 6$.
(a) Express $f(x)$ in partial fractions.
(b) Write down the y-intercept of $f(x)$.
(c) Write down the equations of the vertical asymptotes of $f(x)$.

Solution

(a) Let $\frac{4}{(x-1)(x-6)} \equiv \frac{A}{x-1}+\frac{B}{x-6}$, where A and B are constants.
$\frac{4}{(x-1)(x-6)} \equiv \frac{A(x-6)}{(x-1)(x-6)}+\frac{B(x-1)}{(x-1)(x-6)}$
$\frac{4}{(x-1)(x-6)} \equiv \frac{A x-6 A+B x-B}{(x-1)(x-6)}$
$4 \equiv(A+B) x+(-6 A-B)$
$0=A+B$
$B=-A$
$4=-6 A-B$
$\therefore 4=-6 A-(-A)$
$4=-5 A$
$A=-\frac{4}{5}$
$\therefore B=-\left(-\frac{4}{5}\right)$
$B=\frac{4}{5}$
$\therefore \frac{4}{(x-1)(x-6)} \equiv-\frac{4}{5(x-1)}+\frac{4}{5(x-6)}$
A1
(b) $\frac{2}{3}$
(c) $x=1, x=6$

A2

Exercise 11

1. Let $f(x)=\frac{x+1}{(x-4)(3 x-1)}, x \neq 4, x \neq \frac{1}{3}$.
(a) Express $f(x)$ in partial fractions.
(b) Write down the x-intercept of $f(x)$.
(c) Write down the equations of the vertical asymptotes of $f(x)$.
2. Let $f(x)=\frac{3-x}{2 x^{2}+5 x+2}, x \neq a, x \neq b, a<b$.
(a) Write down the value of a and the value of b.
(b) Express $f(x)$ in partial fractions.
3. Let $f(x)=\frac{x^{2}-x-1}{(x+3)(x+7)}, x \neq-3, x \neq-7 . f(x)$ can be expressed in the form $A+\frac{B}{x+3}+\frac{C}{x+7}$.
(a) Find the values of A, B and C.
(b) Write down the equation of the horizontal asymptote of $f(x)$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

4. Let $f(x)=\frac{x^{2}+3}{(2-x)(5-3 x)}, x \neq 2, x \neq \frac{5}{3} . f(x)$ can be expressed in the form $A+\frac{B}{2-x}+\frac{C}{5-3 x}$.
(a) Find the values of A, B and C.

Let $g(x)=\frac{1}{f(x)}$.
(b) Show that $g(x)$ has no vertical asymptote.

