

Lists of Resources when Revising IBDP Mathematics

Math AA Book 1 Solution		Math Al Book 1 Solution	
	CLICK HERE		CLICK HERE
	Math AA Book 2 Solution		Math AI Book 2 Solution
	CLICK HERE		CLICK HERE
Free Last Minute Formula & Concept List		IBDP Mathematics Exam Info & Skills	
	CLICK HERE		CLICK HERE
Math & GDC Skills Video List		More Mock Papers?	
	CLICK HERE		

Chapter

Functions

SUMMARY POINTs

- ✓ Odd and even functions:
 - f(x) is odd if f(-x) = -f(x)
 - f(x) is even if f(-x) = f(x)
- \checkmark $f^{-1}(x)$ exists only when f(x) is one-to-one in the restricted domain

✓ Absolute function:

$$f(x) = \begin{cases} f(x) \text{ if } x \ge 0\\ -f(x) \text{ if } x < 0 \end{cases}$$

Solutions of Chapter 1

Paper 1 Section A – Absolute Signs

Example

1

(a)	Solve the inequality $ 3x+1 > x+1$.	
		[3]
(b)	Solve the inequality $ 3x+1 \ge x+1 $.	

Solution

(a)	$\left 3x+1\right > x+1$		
	3x+1 > x+1 or $3x+1 < -(x+1)$	M1	
	3x+1 > x+1 or $3x+1 < -x-1$		
	2x > 0 or $4x < -2$		
	$x > 0$ or $x < -\frac{1}{2}$	A2	
			[3]

(b)
$$|3x+1| \ge |x+1||$$

 $|3x+1|^2 \ge |x+1|^2$
 $9x^2 + 6x + 1 \ge x^2 + 2x + 1$
 $8x^2 + 4x \ge 0$
 $4x(2x+1) \ge 0$
 $\therefore x \le -\frac{1}{2} \text{ or } x \ge 0$
[4]

Exercise 1

1. (a) Solve the inequality
$$|2x+1| \le 4x-1$$
.
(b) Solve the inequality $|2x+1| > |4x-1|$.
[3]

[4]

2. (a) Solve the inequality
$$\frac{|x|+1}{3} < 2|x|-5$$
. [3]

(b) Solve the inequality
$$\left|\frac{x+1}{3}\right| < |2x-5|$$
.

[4]

1

3. Let
$$f(x) = 2x + \frac{3}{x}$$
, where $x > 0$. Solve the inequality $f(|x|) > 5$. [5]

4. Let
$$f(x) = \frac{x^3 - 14x + 8}{x + 4}$$
, where $x < 0$. Solve the inequality $f(|x|) \ge |x| + 2$.

Paper 1 Section A – Absolute Rational Functions

(a) Sketch the graph of $y = \left| \frac{2x+1}{x-2} \right|$, showing clearly any asymptotes and any points

of intersection with the axes.

(b) Solve the equation
$$\left|\frac{2x+1}{x-2}\right| = 3$$
.

[3]

Solution

(a)	For correct asymptotes	A1
	For correct intercepts	A1
	For correct shape	A2

[4]

(b)
$$\left|\frac{2x+1}{x-2}\right| = 3$$

 $\frac{2x+1}{x-2} = 3 \text{ or } \frac{2x+1}{x-2} = -3$ M1
 $2x+1=3(x-2) \text{ or } 2x+1=-3(x-2)$
 $2x+1=3x-6 \text{ or } 2x+1=-3x+6$
 $7 = x \text{ or } 5x = 5$
 $x = 7 \text{ or } x = 1$ A2

[3]

Exercise 2

1. (a) Sketch the graph of $y = \left| \frac{3x-1}{1-x} \right|$, showing clearly any asymptotes and any points

of intersection with the axes.

6		
4		
2		
 -2 0	2	<u>4</u>

(b) Solve the equation
$$\left|\frac{3x-1}{1-x}\right| = 5$$
.

[3]

2. (a) Sketch the graph of $y = \left| \frac{1-2x}{x+1} \right|$, showing clearly any asymptotes and any points of intersection with the axes. [4]

	<i>y</i> 6		
	4		
	2		
 -2	0	2	→ <i>x</i>

(b) It is given that the equation $\left|\frac{1-2x}{x+1}\right| = k$ has only one solution. Write down the possible values of k.

3. The function f is given by
$$f(x) = \frac{2x}{2-x}$$
, $x \neq 2$. It is given that $f^{-1}(x) = \frac{2x}{ax+2}$

(a) Find the value of a.

[3]

(b) Sketch the graph of $y = |f^{-1}(x)|$, showing clearly any asymptotes and any points of intersection with the axes.

			<i>y</i> 6	
			4	
			2	
-	-4	-2	0	2

4. The function f is given by $f(x) = \frac{1}{3-x}$, where x > -3, $x \ne 3$. On the same coordinate plane, sketch the following graphs, showing clearly any asymptotes and any points of intersection with the axes.

(a) (i)
$$y = |f(x)|$$
,

(ii)
$$y = f(|x|)$$
.

(b) Write down the number of solutions of the equation |f(x)| = f(|x|) for $-3 \le x \le 0$.

[1]

[6]

Paper 1 Section A – Odd and Even Functions

Example

The function f and g are defined as $f(x) = x^6$ and $g(x) = \sqrt{\sqrt[3]{x+4}}$, $x \in \mathbb{R}$.

- (a) Find the expression of $(g \circ f)(x)$.
- (b) Show that $(g \circ f)(x)$ is an even function. [2]
- (c) Write down the range of $(g \circ f)(x)$.

Solution

(a)
$$(g \circ f)(x) = \sqrt{\sqrt[3]{f(x)} + 4}$$

 $(g \circ f)(x) = \sqrt{\sqrt[3]{x^6} + 4}$ M1

$$(g \circ f)(x) = \sqrt{x^2 + 4}$$
 A1

(b)
$$(g \circ f)(-x) = \sqrt{(-x)^2 + 4}$$
 M1

$$(g \circ f)(-x) = \sqrt{x^2 + 4}$$

$$(g \circ f)(-x) = (g \circ f)(x)$$
A1

Thus, $(g \circ f)(x)$ is an even function. AG [2]

(c)
$$\{y: y \ge 2\}$$
 A2

[2]

[2]

Exercise 3

- 1. The function f and g are defined as $f(x) = \frac{4x+1}{\sqrt{x}}$ and $g(x) = 4x^2$, $x \in \mathbb{R}$, x > 0.
 - (a) Find the expression of $(f \circ g)(x)$. [2]
 - (b) Show that $(f \circ g)(x)$ is an odd function.

It is given that the coordinates of the minimum point of $y = (f \circ g)(x)$ are (0.25, 4).

- (c) Write down the range of $(f \circ g)(x)$.
- **2.** The function f is defined as $f(x) = x^4 x^2$, $x \in \mathbb{R}$.
 - (a) Show that f(x) is an even function.

The minimum point of f has x-coordinate $-\frac{1}{\sqrt{2}}$ for $x \le 0$.

(b) Find the range of f(x).

[3]

[2]

[1]

[2]

- 3. The function f is defined as $f(x) = \frac{x}{x^2 + 0.19}$, $x \in \mathbb{R}$.
 - (a) Show that f(x) is an odd function. [2] It is given that $f(a) = a, a \in \mathbb{R}$.
 - (b) Find the possible values of *a*.
 (c) Write down the equation of the horizontal asymptote of *f*(*x*).

[1]

- 4. The function f is defined as $f(x) = \frac{2-5x}{2-9x}, x \in \mathbb{R}, x \neq \frac{2}{9}$.
 - (a) Show that f(|x|) is an even function.
 (b) Write down the equation of the horizontal asymptote of f(|x|).
 (c) Write down the equations of the vertical asymptotes of f(|x|).

Paper 2 Section A – Restricted Domains for f^{-1}

Example

The function f is defined as $f(x) = |x^2 - 4| - 5$, $x \ge -10$. The domain of f is restricted such that f^{-1} exists.

(a) State the largest possible domain of f. [2]
(b) Find the expression of f⁻¹. [3]
(c) State the domain of f⁻¹.

Solution

 $\{x : x \ge 2\}$ A2 (a) [2] $f(x) = (x^2 - 4) - 5$ (b) (A1) for correct function $y = x^2 - 9$ $\Rightarrow x = y^2 - 9$ (M1) for swapping variables $x + 9 = y^2$ $y = \sqrt{x+9}$ $\therefore f^{-1}(x) = \sqrt{x+9}$ A1 [3] $\{x: x \ge -5\}$ (c) A1

[1]

[1]

1

Exercise 4

- 1. The function f is defined as f(x) = 10 2|x 7|, $x \ge 0$. The domain of f is restricted such that f^{-1} exists.
 - (a) State the largest possible domain of f. [2]
 - (b) Find the expression of f^{-1} .
 - [3]

[2]

[3]

- 2. The function f is defined as $f(x) = |x^3 8|$, $x \le 20$. The domain of f is restricted such that f^{-1} exists.
 - (a) State the largest possible domain of f.
 - (b) Find the expression of f^{-1} .

(c) State the value of
$$f^{-1}\left(\frac{63}{8}\right)$$
. [1]

- 3. The function f is defined as $f(x) = (2x+1)^2$, $-4 \le x \le 4$. The domain of f is restricted such that f^{-1} exists.
 - (a) State the largest possible domain of f.

[2]

[2]

- (b) Find the expression of f^{-1} .
- (c) The function g is defined such that $(f \circ g)(x) = (4x+7)^2$. Find a possible expression of g(x).

- 4. The function f is defined as $f(x) = -(x-3)^2 + 5$, $-5 \le x \le 5$. The domain of f is restricted such that f^{-1} exists.
 - (a) State the largest possible domain of f.
 - (b) Find the expression of f^{-1} .
 - (c) The function g is defined such that $(g^{-1} \circ f^{-1})(x) = 2x$. Find the expression of g(x).

[3]

[2]

[3]

1

The following diagram shows the graph of y = f(x):

It is given that the range of f(x) is $\{y: -1 \le y \le 1\}$.

On the same diagram, sketch the graph of $y = \frac{1}{f(x)}$, clearly indicating any asymptotes and axes intercepts.

[5]

Solution

Exercise 5

1. The following diagram shows the graphs of y = f(x):

On the same diagram, sketch the graph of $y = (f(x))^2$, clearly indicating any intercepts and stationary point.

[4]

2. The following diagram shows the graphs of y = f(x) and y = g(x):

It is given that the range of g(x) is $\{y: 0 \le y \le 1\}$.

On the same diagram, sketch the graph of $y = \frac{g(x)}{f(x)}$, clearly indicating any asymptotes and axes intercepts.

[5]

3. The following diagram shows the graphs of y = f(x):

On the same diagram, sketch the graph of $y = \sqrt{f(x)}$, clearly indicating any intercepts.

4. The following diagram shows the graphs of y = f(x):

On the same diagram, sketch the graph of $y = \frac{f(x)}{|x|}$, clearly indicating any vertical asymptote and axes intercepts.

Chapter

Polynomials

SUMMARY POINTs

Number of roots of the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$: The maximum number of roots of f(x) = 0 is n

✓ Sum and product of roots of $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$:

1. $r_1, r_2, ..., r_n$: Roots

2.
$$r_1 + r_2 + \dots + r_n = -\frac{a_{n-1}}{a}$$

3.
$$r_1r_2 + r_1r_3 + \dots + r_1r_n + r_2r_3 + r_2r_4 + \dots + r_2r_n + \dots + r_{n-1}r_n = \frac{a_{n-2}}{a_n}$$

4.
$$r_1 r_2 r_3 \cdots r_{n-1} r_n = (-1)^n \frac{a_0}{a_n}$$

•••

Solutions of Chapter 2

When the polynomial $2x^3 + ax^2 + bx + 1$ is divided by (x-1), the remainder is 9, and when divided by (x+2), it is 3. Find the value of *a* and the value of *b*, where *a*, $b \in \mathbb{R}$. [5]

Solution

$2(1)^3 + a(1)^2 + b + 1 = 9$	(M1) for remainder theorem
2 + a + b + 1 = 9	
b = 6 - a	A1
$2(-2)^3 + a(-2)^2 + b(-2) + 1 = 3$	
-16+4a-2b+1=3	
$\therefore -16 + 4a - 2(6 - a) + 1 = 3$	(M1) for substitution
-16+4a-12+2a+1=3	
6a = 30	
<i>a</i> = 5	A1
b = 6 - 5	
<i>b</i> = 1	A1
	[5]

Exercise 6

1. When the polynomial $ax^3 - x^2 + bx + 3$ is divided by (x+2), the remainder is -13, and when divided by (x-3), it is 27. Find the value of a and the value of b, where a, $b \in \mathbb{R}$.

[5]

2. The same remainder is found when $4x^3 - 2kx^2 - 5$ and $3x^3 - k^2x^2 + 15$ are divided by x - 2. Find the possible values of k.

[6]

2

- 3. When $4x^3 + px^2 + qx$ is divided by x 2 and x + 2, the remainders are equal. Given that $p, q \in \mathbb{R}$.
 - (a) Find the value of q;
 - (b) Find the set of values of p.

[1]

[3]

4. Let $f(x) = x^4 + 4x^2 - 3x + 2$. The remainder when f(x) is divided by (x-p) is q, and the remainder when f(x) is divided by (x+p) is q+12, where p and q are constants. Find the value of p and the value of q.

[5]

The polynomial $P(x) = ax^3 + 6x^2 + bx - 12$ is divisible by (x-1) and by (x+4). Find the value of *a* and the value of *b*, where *a*, $b \in \mathbb{R}$.

[5]

2

Solution

P(1) = 0	
$a(1)^3 + 6(1)^2 + b(1) - 12 = 0$	(M1) for factor theorem
b = 6 - a	A1
P(-4) = 0	
$a(-4)^3 + 6(-4)^2 + b(-4) - 12 = 0$	
-64a+96-4b-12=0	
$\therefore -64a + 96 - 4(6 - a) - 12 = 0$	(M1) for substitution
-64a + 96 - 24 + 4a - 12 = 0	
-60a = -60	
a = 1	A1
b = 6 - 1	
<i>b</i> = 5	A1
	[5]

Exercise 7

1. The polynomial $f(x) = ax^3 + bx^2 - 13x + 6$ is divisible by (x-2) and by (x+3). Find the value of *a* and the value of *b*, where *a*, $b \in \mathbb{R}$.

[5]

2. The cubic polynomial $x^3 + px^2 + qx + 48$ has a factor (x-4) and leaves a remainder 105 when divided by (x+3). Find the value of p and the value of q, where $p, q \in \mathbb{R}$.

[5]

- 3. Consider the polynomial $p(x) = x^3 + mx 30$.
 - (a) Given that p(x) has a factor (x-5), find the value of m.
 - (b) Hence or otherwise, factorize p(x) as a product of linear factors.

[3]

[2]

- 4. Consider the polynomial $q(x) = 2x^3 + (k+9)x^2 + kx + (k+1)$. It is given that q(x) has a factor (x+3).
 - (a) Find the value of k.
 - (b) Hence or otherwise, factorize q(x) as a product of linear factors.

[3]

Paper 1 Section A – Sum and Product of Roots

Example

The equation $3x^3 + 24x^2 + x + 5 = k$ has roots r_1 , r_2 and r_3 . Given that $r_1 + r_2 + r_3 = r_1r_2r_3$, find the value of k.

[5]

Solution

 $3x^{3} + 24x^{2} + x + 5 = k$ $3x^{3} + 24x^{2} + x + (5 - k) = 0$ (M1) for valid approach $r_{1} + r_{2} + r_{3} = r_{1}r_{2}r_{3}$ $\therefore -\frac{24}{3} = -\frac{5 - k}{3}$ M1A2 24 = 5 - k k = -19A1
[5]

Exercise 8

1. The equation $2x^3 + 30x^2 + kx + 20 = x - 5$ has roots r_1 , r_2 and r_3 . Given that $r_1r_2 + r_2r_3 + r_1r_3 = 2r_1r_2r_3$, find the value of k.

[5]

2. The equation $x^4 + kx^3 + 3x^2 + 2x + 1 = -x^4 + 4x^3 + 13$ has roots r_1 , r_2 , r_3 and r_4 . Given that $r_1r_2r_3r_4 + r_1 + r_2 + r_3 + r_4 = 0$, find the value of k.

[5]

2

3. Let
$$f(x) = 6x^3 - 18x^2 + 36x + 72$$
, $x \in \mathbb{R}$. r_1 , r_2 and r_3 are the roots of $f(x) = 0$.

(a) Find the value of
$$\frac{1}{r_1r_2} + \frac{1}{r_2r_3} + \frac{1}{r_1r_3}$$
.

A new polynomial is defined by g(x) = f(x-3).

(b) Find the sum of the roots of the equation g(x) = 0.

[2]

[4]

- 4. Let $g(x) = -x^3 + 71x^2 10x 15$, $x \in \mathbb{R}$. r_1 , r_2 and r_3 are the roots of g(x) = 0.
 - (a) Find the value of $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

[4]

A new polynomial is defined by h(x) = 2g(x).

(b) Find the product of the roots of the equation h(x) = 0.

Paper 1 Section A – Transformations of Roots

Example

The real root of the equation $x^3 + 2x - 5 = 0$ is 1.3283, correct to four decimal places. Determine the real root for each of the following.

(a)
$$(x-5)^3 + 2(x-5) - 5 = 0$$
 [2]

(b)
$$\frac{1}{8}x^3 + x - 5 = 0$$
 [2]

Solution

(a)	The required real root		
	=1.3283+5	(M1) for valid approach	
	= 6.3283	A1	
			[2]
(b)	The required real root		
	=2(1.3283)	(M1) for valid approach	
	= 2.6566	A1	
			[2]

Exercise 9

1. The real root of the equation $4x^3 + 19x^2 + 10x - 50 = 0$ is 1.25. Determine the real root for each of the following.

(a)
$$4(x+6)^3 + 19(x+6)^2 + 10(x+6) - 50 = 0$$
 [2]

(b)
$$-4x^3 + 19x^2 - 10x - 50 = 0$$

2. The real root of the equation $4x^3 + 17x^2 + 30x + 27 = 0$ is -2.25. Determine the real root for each of the following.

(a)
$$4x^3 - 17x^2 + 30x - 27 = 0$$
 [2]

(b)
$$108x^3 + 153x^2 + 90x + 27 = 0$$

- Consider the function f(x) = -x⁴ + 4x³ + 5x + 3, x ∈ ℝ. The graph of f is translated four units to the right to form the function g(x). Express g(x) in the form ax⁴ + bx³ + cx² + dx + e, where a, b, c, d, e ∈ Z.
- 4. Consider the function $f(x) = 2x^4 + 5x^2 2$, $x \in \mathbb{R}$. The graph of f is translated one unit to the left and then stretched vertically with scale factor 2 to form the function g(x). Express g(x) in the form $ax^4 + bx^3 + cx^2 + dx + e$, where $a, b, c, d, e \in \mathbb{Z}$.

[5]

10 Paper 2 Section A – Number of Solutions

Find the values of r such that the equation $x^3 - 6x^2 + 9x = r - 3$ has two distinct real solutions.

Solution

 $x^{3}-6x^{2}+9x=r-3$ $x^{3}-6x^{2}+9x+3=r$ By considering the graph of $y = x^{3}-6x^{2}+9x+3$, the local maximum is (1, 7) and the local minimum is (3, 3). (M1) for valid approach Thus, r = 3 or r = 7. A2
[4]

Exercise 10

1. Find the range of values of r such that the equation $-2x^3 - 3x^2 + 12x + r - 7 = 0$ has three distinct real solutions.

[4]

2. Find the range of values of k such that the equation $x^4 - 8x^3 + 16x^2 = k - 4x$ has no real solution.

[4]

- 3. Find the range of values of r such that the equation $x^2 + 180 = \frac{r + 24x^2}{x}$ has at most two distinct real solutions.
- 4. Find the range of values of k such that the equation $8x^2(2x+1) = k+192x + x^4$ has four distinct real solutions.

11 Paper 2 Section A – Partial Fractions

Example

Let
$$f(x) = \frac{4}{(x-1)(x-6)}, x \neq 1, x \neq 6.$$

- (a) Express f(x) in partial fractions.
- (b) Write down the y-intercept of f(x). [4]
- (c) Write down the equations of the vertical asymptotes of f(x).

[2]

[1]

Solution

(a)	Let $\frac{4}{(x-1)(x-6)} \equiv \frac{A}{x-1} + \frac{B}{x-6}$, where <i>A</i> and <i>B</i>			
	are constants.			
	4 = A(x-6) + B(x-1)	M1		
	$(x-1)(x-6)^{-}(x-1)(x-6)^{-}(x-1)(x-6)$	1411		
	4 = Ax - 6A + Bx - B			
	$\overline{(x-1)(x-6)} = \overline{(x-1)(x-6)}$			
	$4 \equiv (A+B)x + (-6A-B)$	A1		
	0 = A + B			
	B = -A			
	4 = -6A - B			
	$\therefore 4 = -6A - (-A)$	A1		
	4 = -5A			
	$A = -\frac{4}{5}$			
	$\therefore B = -\left(-\frac{4}{5}\right)$			
	$B = \frac{4}{5}$			
	$\therefore \frac{4}{(x-1)(x-6)} \equiv -\frac{4}{5(x-1)} + \frac{4}{5(x-6)}$	A1		

(b)
$$\frac{2}{3}$$
 A1

(c)
$$x=1, x=6$$
 A2 [2]

Exercise 11

1. Let
$$f(x) = \frac{x+1}{(x-4)(3x-1)}, x \neq 4, x \neq \frac{1}{3}$$
.

(a) Express
$$f(x)$$
 in partial fractions. [4]

(b) Write down the x-intercept of
$$f(x)$$
. [1]

(c) Write down the equations of the vertical asymptotes of
$$f(x)$$
. [2]

2. Let
$$f(x) = \frac{3-x}{2x^2+5x+2}$$
, $x \neq a$, $x \neq b$, $a < b$.
(a) Write down the value of a and the value of b .

(b) Express
$$f(x)$$
 in partial fractions. [2]

3. Let $f(x) = \frac{x^2 - x - 1}{(x+3)(x+7)}, x \neq -3, x \neq -7$. f(x) can be expressed in the form $A + \frac{B}{x+3} + \frac{C}{x+7}$.

(a) Find the values of
$$A$$
, B and C .

[6]

(b) Write down the equation of the horizontal asymptote of f(x).

[1]

[1]

4. Let
$$f(x) = \frac{x^2 + 3}{(2 - x)(5 - 3x)}, x \neq 2, x \neq \frac{5}{3}$$
. $f(x)$ can be expressed in the form
 $A + \frac{B}{2 - x} + \frac{C}{5 - 3x}$.

(a) Find the values of A, B and C.

[6] Let $g(x) = \frac{1}{f(x)}$.

(b) Show that g(x) has no vertical asymptote.

[1]