Exercise 1.1

(a) The required hypotenuse

$$
\begin{aligned}
& =\sqrt{1107^{2}+4920^{2}} \\
& =5043 \mathrm{~mm} \\
& =5.043 \times 10^{3} \mathrm{~mm}
\end{aligned}
$$

Pythagoras' theorem (A1)
$a=5.043 \& k=3(\mathrm{~A} 1)$
(b) The required perimeter
$=1107+4920+5043$
$=11070 \mathrm{~mm}$
$=11000 \mathrm{~mm}$
$=1.1 \times 10^{4} \mathrm{~mm}$
(c) The required area

$$
\begin{aligned}
& =\frac{(1107)(4920)}{2} \\
& =2723220 \mathrm{~mm}^{2} \\
& =2723000 \mathrm{~mm}^{2} \\
& =2.723 \times 10^{6} \mathrm{~mm}^{2}
\end{aligned}
$$

The sum of 3 sides (A1)

Round off to 2 sig. fig.
$a=1.1 \& k=4$ (A1)
$\frac{\text { Base length } \times \text { Height }}{2}(\mathrm{~A} 1)$

Round off to 4 sig. fig.
$a=2.723 \& k=6$ (A1)

Exercise 1.2

(a) The exact volume

$$
\begin{aligned}
& =(2)(0.8)(0.8) \\
& =1.28 \mathrm{~m}^{3}
\end{aligned}
$$

(b) The approximated value
$=(2.2)(1)(0.7)$
$=1.54 \mathrm{~m}^{3}$
The percentage error
$=\left|\frac{1.54-1.28}{1.28}\right| \times 100 \%$
$=20.3125 \%$
$=20.3 \%$
1.54 (A1)
(A1)
$\left|\frac{v_{A}-v_{E}}{v_{E}}\right| \times 100 \%(\mathrm{M} 1)$

Exercise 1.3

(a) $\quad u_{1}=10$
(b) (i) $\quad u_{2}=(5+1)(2)$

$$
u_{2}=12
$$

$$
u_{3}=(5+1+1)(2)
$$

$$
u_{2}=(6)(2) \& u_{3}=(7)(2)(\mathrm{A} 1)
$$

$$
\begin{equation*}
u_{3}=14 \tag{AG}
\end{equation*}
$$

(ii) $\quad d=2$
(c) (i) $\quad u_{n}=(20)(2)$

Set up an equation
$\therefore 10+(n-1)(2)=40$
Correct equation (A1)
$2(n-1)=30$
$n-1=15$
$n=16$
Thus, Fatima has collected 16 apples. (A1)
(ii) The total distance
$=S_{16}$
$=\frac{16}{2}\left[u_{1}+u_{16}\right]$
$S_{n}=\frac{n}{2}\left[u_{1}+u_{n}\right](\mathrm{M} 1)$
$=\frac{16}{2}(10+40)$
$u_{1}=10 \quad \& \quad u_{16}=40(\mathrm{~A} 1)$
$=400$ metres
(d) (i) $\quad S_{n}=491$
$\therefore \frac{n}{2}[2(10)+(n-1)(2)]=491 \quad$ Correct equation (A1)
$\frac{n}{2}(20+2 n-2)=491$
$\frac{n(2 n+18)}{2}-491=0$
By considering the graph of
$y=\frac{n(2 n+18)}{2}-491$, the horizontal
intercepts are -27.11084 (Rejected) and 18.110838 .
Thus, the total number of apples that Akash has collected is 18 .

GDC approach (M1)
(A1)
(ii) The required distance

$$
\begin{aligned}
& =491-S_{18} \\
& =491-\frac{18}{2}[2(10)+(18-1)(2)] \\
& =5 \text { metres }
\end{aligned}
$$

Subtracted by S_{18} (M1)
$u_{1}=10 \quad \& \quad d=2(\mathrm{~A} 1)$
(A1)

Exercise 1.4

(a) The café's profit

$$
\begin{array}{lr}
=u_{10} & \text { 10th term (M1) } \\
=u_{1} \times r^{10-1} & \\
=1200 \times 1.08^{9} & u_{1}=1200 \& r=1.08 \text { (A1) } \\
=\$ 2398.805553 & \\
=\$ 2400 & \text { (A1) } \tag{A1}
\end{array}
$$

(b) (i) S_{n}

$$
\begin{array}{ll}
=\frac{u_{1}\left(1-r^{n}\right)}{1-r} & S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}(\mathrm{M} 1) \\
=\frac{1200\left(1-1.08^{n}\right)}{1-1.08} & u_{1}=1200 \& r=1.08 \quad(\mathrm{~A} 1) \\
=-15000\left(1-1.08^{n}\right) & \text { (AG) }
\end{array}
$$

(ii) The total profit

$$
\begin{align*}
& =S_{11} \\
& =-15000\left(1-1.08^{11}\right) \\
& =\$ 19974.58496 \\
& =\$ 20000 \tag{A1}
\end{align*}
$$

$$
n=11(\mathrm{M} 1)
$$

(c) The dessert shop's profit

$$
\begin{aligned}
& =v_{7} \\
& =1200+(7-1)(180) \\
& =\$ 2280
\end{aligned}
$$

7th term (M1)
$v_{1}=1200 \quad \& \quad d=180$ (A1)
(A1)
(d) $\quad S_{m}>\frac{m}{2}\left[2 u_{1}+(m-1) d\right]$ Set up an inequality
$\therefore-15000\left(1-1.08^{m}\right)>\frac{m}{2}[2(1200)+(m-1)(180)] \quad$ Correct inequality (A1)
$-15000\left(1-1.08^{m}\right)-\frac{m}{2}[2(1200)+(m-1)(180)]>0$
By considering the graph of
$y=-15000\left(1-1.08^{m}\right)-\frac{m}{2}[2(1200)+(m-1)(180)]$,
the graph is above the horizontal axis when
$m<1$ (Rejected) or $m>23.044309$.
$\therefore m=24$

GDC approach (M1)
(A1)
(a) (i) $\left\{\begin{array}{l}8 x+7 y+5 z=41 \\ 6 x+4 y+10 z=22 \\ 13 x+7 y=66\end{array}\right.$
(A1)(A1)(A1)
(ii) $x=4, y=2$ and $z=-1$
(A1)(A1)(A1)
(b) A team drops one point for losing a game.
(A1)

Exercise 1.6

(a) (i) By financial solver:

$$
\begin{array}{|l|}
\hline \mathrm{N}(\mathrm{n})=16 \\
\mathrm{I} \%=8 \\
\mathrm{PV}=-10000 \\
\mathrm{PMT}(\mathrm{Pmt})=0 \\
\mathrm{FV}=? \\
\mathrm{P} / \mathrm{Y}(\mathrm{PpY})=4 \\
\mathrm{C} / \mathrm{Y}(\mathrm{CpY})=4 \\
\mathrm{PMT}(\mathrm{PmtAt}): \mathrm{END} \\
\hline \mathrm{FV}=13727.85705 \\
\hline
\end{array}
$$

Thus, the amount after 4 years is $\$ 13700$.
(ii) The interest

$$
\begin{align*}
& =13727.85705-10000 \tag{M1}\\
& =\$ 3727.857051 \\
& =\$ 3730 \tag{A1}
\end{align*}
$$

(b) By financial solver:

$\mathrm{N}(\mathrm{n})=?$
$\mathrm{I} \%=8$
$\mathrm{PV}=-10000$
$\mathrm{PMT}(\mathrm{Pmt})=0$
$\mathrm{FV}=25000$
$\mathrm{P} / \mathrm{Y}(\mathrm{PpY})=4$
$\mathrm{C} / \mathrm{Y}(\mathrm{CpY})=4$
$\mathrm{PMT}(\mathrm{PmtAt}): \mathrm{END}$
$\mathrm{N}=46.27116989$

GDC approach (M1)(A1)

The number of years
$=\frac{46.27116989}{4}$
$=11.56779247$
Thus, the required year is 2036 .
(c) (i) 5%
(ii) By financial solver:

$$
\begin{array}{|l|}
\hline \mathrm{N}(\mathrm{n})=16 \\
\mathrm{I} \%=5 \\
\mathrm{PV}=-10000 \\
\mathrm{PMT}(\mathrm{Pmt})=0 \\
\mathrm{FV}=? \\
\mathrm{P} / \mathrm{Y}(\mathrm{PpY})=4 \\
\mathrm{C} / \mathrm{Y}(\mathrm{CpY})=4 \\
\mathrm{PMT}(\mathrm{PmtAt}): \text { END } \\
\hline \mathrm{FV}=12198.89548
\end{array}
$$

Thus, the real amount after 4 years is $\$ 12200$.

Exercise 1.7

(a) (i) By financial solver:

$\mathrm{N}(\mathrm{n})=270$
$\mathrm{I} \%=3.3$
$\mathrm{PV}=300000$
$\mathrm{PMT}(\mathrm{Pmt})=?$
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}(\mathrm{PpY})=12$
$\mathrm{C} / \mathrm{Y}(\mathrm{CpY})=12$
$\mathrm{PMT}(\mathrm{PmtAt}): \mathrm{END}$
PMT $=-1575.653923$

Thus, the amount of monthly payment is 1580 USD.
(ii) The total amount
$=(1575.653923)(270)$
$P M T \times N(\mathrm{~A} 1)$
$=425426.5592$ USD
$=425000$ USD
(iii) The amount of interest
= 425426.5592 - 300000
$I=F V-P V(\mathrm{M} 1)$
$=125426.5592$ USD
= 125000 USD
(b) (i) By financial solver:

$$
\begin{array}{|l|}
\hline \mathrm{N}(\mathrm{n})=? \\
\mathrm{I} \%=3.3 \\
\mathrm{PV}=300000 \\
\mathrm{PMT}(\mathrm{Pmt})=-2250 \\
\mathrm{FV}=0 \\
\mathrm{P} / \mathrm{Y}(\mathrm{PpY})=12 \\
\mathrm{C} / \mathrm{Y}(\mathrm{CpY})=12 \\
\mathrm{PMT}(\mathrm{PmtAt}): \text { END } \\
\hline \mathrm{N}=166.3222392
\end{array}
$$

Thus, the required number of months is 167.
(ii) The exact total amount
$=(167)(2250)$
$P M T \times N(\mathrm{~A} 1)$
$=375750$ USD
(iii) The amount of interest

$$
\begin{aligned}
& =375750-300000 \\
& =75750 \text { USD }
\end{aligned}
$$

$$
I=F V-P V(\mathrm{M} 1)
$$

(A1)
(c) The amount of monthly payment in option 1 is less than that in option 2. Thus, the option 1 is better.

Comparing monthly payment (R1) (A1)

