Formula List of Analysis and Approaches Standard Level for IBDP Mathematics

Analysis & Approaches Standard Level Analysis & Approaches Higher Level

Applications & Interpretation Standard Level

Applications & Interpretation Higher Level

1 Standard Form

✓ Standard Form:

A number in the form $(\pm)a \times 10^k$, where $1 \le a < 10$ and k is an integer

Quadratic Functions

✓ General form $y = ax^2 + bx + c$, where $a \neq 0$:

<i>a</i> > 0	The graph opens upward	
<i>a</i> < 0	The graph opens downward	
С	y -intercept	
$h = -\frac{b}{2a}$	x -coordinate of the vertex	
$k = ah^2 + bh + c$	y -coordinate of the vertex	
$\kappa - an + bn + c$	Extreme value of y	
x = h	Equation of the axis of symmetry	

✓ Other forms:

- 1. $y = a(x-h)^2 + k$: Vertex form
- 2. y = a(x-p)(x-q): Factored form with x-intercepts p and q

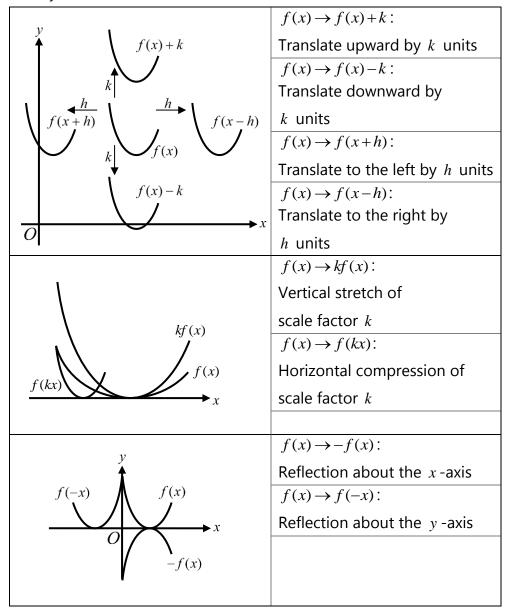
✓ Solving the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$:

1. Factorization by cross method

2.
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
: Quadratic Formula

3. Method of completing the square

✓ The discriminant $\Delta = b^2 - 4ac$ of $ax^2 + bx + c = 0$:


$\Delta > 0$	The quadratic equation has	
	two distinct real roots	
$\Delta = 0$	The quadratic equation has	
	one double real root	
A O	The quadratic equation has	
$\Delta < 0$	no real root	

✓ The *x*-intercepts of the quadratic function $y = ax^2 + bx + c$ are the roots of the corresponding quadratic equation $ax^2 + bx + c = 0$

3 Functions

- ✓ The function y = f(x):
 - 1. f(a): Functional value when x = a
 - 2. Set of values of *x* : Domain
 - 3. Set of values of *y* : Range
- ✓ $f \circ g(x) = f(g(x))$: Composite function when g(x) is substituted into f(x)
- ✓ Steps of finding the inverse function $y = f^{-1}(x)$ of f(x):
 - 1. Start from expressing *y* in terms of *x*
 - 2. Interchange *x* and *y*
 - 3. Make y the subject in terms of x
- ✓ Properties of $y = f^{-1}(x)$:
 - 1. $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
 - 2. The graph of $y = f^{-1}(x)$ is the reflection of the graph of y = f(x) about y = x

✓ Summary of transformations:

- ✓ Properties of rational function $y = \frac{ax+b}{cx+d}$:
 - 1. $y = \frac{1}{x}$: Reciprocal function
 - 2. $y = \frac{a}{c}$: Horizontal asymptote
 - 3. $x = -\frac{d}{c}$: Vertical asymptote

4 Exponential and Logarithmic Functions

- ✓ $y = a^x$: Exponential function of base $a \neq 1$
- ✓ Methods of solving an exponential equation $a^x = b$:
 - 1. Change *b* into a^y such that $a^x = a^y \Longrightarrow x = y$
 - 2. Take logarithm for both sides
- ✓ $y = \log_a x$: Logarithmic function of base a > 0
- \checkmark $y = \log x = \log_{10} x$: Common Logarithmic function
- ✓ $y = \ln x = \log_e x$: Natural Logarithmic function, where e = 2.71828... is an exponential number
- \checkmark Laws of logarithm, where *a*, *b*, *c*, *p*, *q*, *x*>0:
 - 1. $x = a^y \Leftrightarrow y = \log_a x$
 - 2. $\log_a 1 = 0$
 - 3. $\log_a a = 1$
 - 4. $\log_a p + \log_a q = \log_a pq$
 - 5. $\log_a p \log_a q = \log_a \frac{p}{q}$

$$6. \qquad \log_a p^n = n \log_a p$$

- 7. $\log_b a = \frac{\log_c a}{\log_c b}$
- ✓ Properties of the graphs of $y = a^x$:

a > 1	0 < <i>a</i> < 1	
y -inter	cept=1	
y increases as x increases	y decreases as x increases	
y tends to zero as x tends to	y tends to zero as x tends to	
negative infinity	positive infinity	
Horizontal asy	vmptote: $y = 0$	

✓ Properties of the graphs of $y = \log_a x$:

a > 1	0 < a < 1
x -inter	cept=1
y increases as x increases	y decreases as x increases
x tends to zero as y tends to	x tends to zero as y tends to
negative infinity	positive infinity
Vertical asyn	nptote: $x = 0$

5 Arithmetic Sequences

- ✓ Properties of an arithmetic sequence u_n :
 - 1. u_1 : First term
 - 2. $d = u_2 u_1 = u_n u_{n-1}$: Common difference
 - 3. $u_n = u_1 + (n-1)d$: General term (*n* th term)
 - 4. $S_n = \frac{n}{2} [2u_1 + (n-1)d] = \frac{n}{2} [u_1 + u_n]$: The sum of the first *n* terms

$$\checkmark \qquad \sum_{r=1}^{n} u_{r} = u_{1} + u_{2} + u_{3} + \dots + u_{n-1} + u_{n}$$
: Summation sign

- Properties of a geometric sequence u_n :
 - 1. u_1 : First term
 - 2. $r = u_2 \div u_1 = u_n \div u_{n-1}$: Common ratio
 - 3. $u_n = u_1 \times r^{n-1}$: General term (*n* th term)
 - 4. $S_n = \frac{u_1(1-r^n)}{1-r}$: The sum of the first *n* terms
 - 5. $S_{\infty} = \frac{u_1}{1-r}$: The sum to infinity, given that -1 < r < 1

- \checkmark Properties of the *n* factorial *n*!:
 - 1. $n!=n\times(n-1)\times(n-2)\times\cdots\times3\times2\times1$
 - 2. 0!=1
 - 3. $n!=n\times(n-1)!$

✓ Properties of the combination coefficient $\binom{n}{r}$:

1. $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ 2. $\binom{n}{0} = \binom{n}{n} = 1$ 3. $\binom{n}{1} = \binom{n}{n-1} = n$ 4. $\binom{n}{r} = \binom{n}{n-r} = \frac{n(n-1)\cdots(n-r+1)}{r!}$

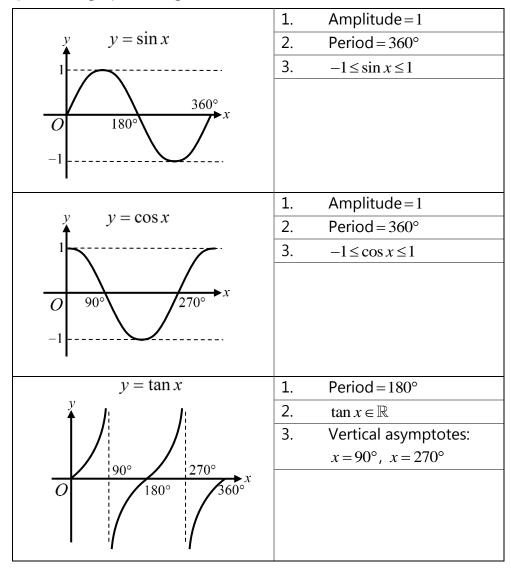
$$\checkmark \qquad \text{The binomial theorem:} \\ (a+b)^n = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a^1 b^{n-1} + \binom{n}{n} a^0 b^n \\ = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r \text{, where the } (r+1) \text{ -th term} = \binom{n}{r} a^{n-r} b^r$$

8 Proofs and Identities

✓ Identity of x: The equivalence of two expressions for all values of x
≡: Identity sign

Coordinate Geometry

- ✓ Consider the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a x y plane:
 - 1. $m = \frac{y_2 y_1}{x_2 x_1}$: Slope of *PQ*
 - 2. $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$: Distance between *P* and *Q*
 - 3. $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$: The mid-point of *PQ*
- \checkmark Forms of straight lines with slope *m* and *y*-intercept *c*:
 - 1. y = mx + c: Slope-intercept form
 - 2. Ax + By + C = 0: General form
- \checkmark Ways to find the x-intercept and the y-intercept of a line:
 - 1. Substitute y = 0 and make x the subject to find the x-intercept
 - 2. Substitute x = 0 and make y the subject to find the y-intercept


10 Trigonometry

- ✓ Trigonometric identities:
 - 1. $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$
 - 2. $\sin^2 \theta + \cos^2 \theta \equiv 1$
- ✓ Double angle formula:
 - 1. $\sin 2\theta = 2\sin \theta \cos \theta$
 - 2. $\cos 2\theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta = \cos^2 \theta \sin^2 \theta$

✓ ASTC diagram

	V
$S (90^{\circ} < \theta < 180^{\circ})$	$A \left(0^{\circ} < \theta < 90^{\circ} \right)$
$\sin\theta > 0$	$\sin\theta > 0$
$\cos\theta < 0$	$\cos\theta > 0$
$\tan\theta < 0$	$\tan\theta > 0$
$T (180^\circ < \theta < 270^\circ)$	$C (270^\circ < \theta < 360^\circ)$
$T (180^\circ < \theta < 270^\circ)$ $\sin \theta < 0$	$C (270^{\circ} < \theta < 360^{\circ})$ $\sin \theta < 0$
	· · · · · · · · · · · · · · · · · · ·
$\sin\theta < 0$	$\sin\theta < 0$

Properties of graphs of trigonometric functions:

✓ Properties of a general trigonometric function $y = A \sin B(x - C) + D$:

1.
$$A = \frac{y_{\text{max}} - y_{\text{min}}}{2}$$
: Amplitude

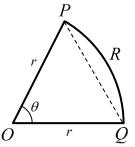
2.
$$B = \frac{2\pi}{\text{Period}}$$

$$D = \frac{y_{\text{max}} + y_{\text{min}}}{2}$$

4. *C* can be found by substitution of a point on the graph

11^{2-D} Trigonometry

 \checkmark Consider a triangle *ABC*:


1. $\frac{\sin A}{a} = \frac{\sin B}{b}$ or $\frac{a}{\sin A} = \frac{b}{\sin B}$: Sine rule Note: The ambiguous case exists if two sides and an angle are known, and the angle is opposite to the shorter known side

2.
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$: Cosine rule

3.
$$\frac{1}{2}ab\sin C$$
: Area of the triangle *ABC*

 $\checkmark \qquad \frac{x^{\circ}}{180^{\circ}} = \frac{y \text{ rad}}{\pi \text{ rad}}: \text{ Method of conversions between degree and radian}$

- ✓ Consider a sector *OPRQ* with centre *O*, radius *r* and ∠*POQ* = θ in radian:
 - 1. $r\theta$: Arc length PQ
 - 2. $\frac{1}{2}r^2\theta$: Area of the sector *OPRQ*
 - 3. $\frac{1}{2}r^2(\theta \sin\theta)$: Area of the segment *PRQ*

- $\checkmark \qquad \text{For a cube of side length } l:$
 - 1. $6l^2$: Total surface area
 - 2. l^3 : Volume
- \checkmark For a cuboid of side lengths a, b and c:
 - 1. 2(ab+bc+ac): Total surface area
 - 2. *abc*: Volume
- \checkmark For a prism of height *h* and cross-sectional area *A*:
 - 1. *Ah*: Volume
- \checkmark For a cylinder of height *h* and radius *r*:
 - 1. $2\pi r^2 + 2\pi rh$: Total surface area
 - 2. $2\pi rh$: Lateral surface area
 - 3. $\pi r^2 h$: Volume
- \checkmark For a pyramid of height *h* and base area *A*:
 - 1. $\frac{1}{3}Ah$: Volume
- \checkmark For a circular cone of height *h* and radius *r*:
 - 1. $l = \sqrt{r^2 + h^2}$: Slant height
 - 2. $\pi r^2 + \pi r l$: Total surface area
 - 3. πrl : Curved surface area
 - 4. $\frac{1}{3}\pi r^2h$: Volume
- \checkmark For a sphere of radius r:
 - 1. $4\pi r^2$: Total surface area
 - 2. $\frac{4}{3}\pi r^3$: Volume

- \checkmark For a hemisphere of radius r:
 - 1. $3\pi r^2$: Total surface area
 - 2. $2\pi r^2$: Curved surface area
 - 3. $\frac{2}{3}\pi r^3$: Volume
- **13** Differentiation
- ✓ Derivatives of a function y = f(x):
 - 1. $\frac{dy}{dx} = f'(x)$: First derivative
 - 2. $\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = f''(x)$: Second derivative
 - 3. $\frac{d^n y}{dx^n} = f^{(n)}(x)$: *n*-th derivative
- Rules of differentiation:

$f(x) = x^n \Longrightarrow f'(x) = nx^{n-1}$	$f(x) = p(x) + q(x) \Longrightarrow f'(x) = p'(x) + q'(x)$
$f(x) = \sin x \Longrightarrow f'(x) = \cos x$	$f(x) = cp(x) \Longrightarrow f'(x) = cp'(x)$
$f(x) = \cos x \Longrightarrow f'(x) = -\sin x$	$f(x) = p(q(x)) \Longrightarrow f'(x) = p'(q(x)) \cdot q'(x)$
$f(x) = \tan x \Longrightarrow f'(x) = \frac{1}{\cos^2 x}$	f(x) = p(x)q(x) $\Rightarrow f'(x) = p'(x)q(x) + p(x)q'(x)$
$f(x) = e^x \Longrightarrow f'(x) = e^x$	$f(x) = \frac{p(x)}{q(x)}$
$f(x) = \ln x \Longrightarrow f'(x) = \frac{1}{x}$	$\Rightarrow f'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{(q(x))^2}$

- Relationships between graph properties and the derivatives:
 - 1. f'(x) > 0 for $a \le x \le b$: f(x) is increasing in the interval
 - 2. f'(x) < 0 for $a \le x \le b$: f(x) is decreasing in the interval
 - 3. f'(a) = 0: (a, f(a)) is a stationary point of f(x)
 - 4. f'(a) = 0 and f'(x) changes from positive to negative at x = a: (a, f(a)) is a maximum point of f(x)
 - 5. f'(a) = 0 and f'(x) changes from negative to positive at x = a: (a, f(a)) is a minimum point of f(x)
 - 6. f''(a) = 0 and f''(x) changes sign at x = a: (a, f(a)) is a point of inflexion of f(x)

- ✓ Slopes of tangents and normals:
 - 1. f'(a): Slope of tangent at x = a
 - 2. $\frac{-1}{f'(a)}$: Slope of normal at x = a

14 Applications of Differentiation

- Equations of tangents and normals:
 - 1. y-f(a) = f'(a)(x-a): Equation of tangent at x = a

2.
$$y-f(a) = \left(\frac{-1}{f'(a)}\right)(x-a)$$
: Equation of normal at $x = a$

- $\checkmark \qquad \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\mathrm{d}N}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}: \text{Rate of change of } N \text{ with respect to the time } t$
- Tests for optimization:
 - 1. First derivative test
 - 2. Second derivative test
- Applications in kinematics:
 - 1. s(t): Displacement with respect to the time t
 - 2. v(t) = s'(t): Velocity
 - 3. a(t) = v'(t): Acceleration

15 Integration

- ✓ Integrals of a function y = f(x):
 - 1. $\int f(x) dx$: Indefinite integral of f(x)
 - 2. $\int_{a}^{b} f(x) dx$: Definite integral of f(x) from a to b

✓ Rules of integration:

$\int x^n \mathrm{d}x = \frac{1}{n+1} x^{n+1} + C$	$\int (p'(x) + q'(x))dx = p(x) + q(x) + C$
$\int \cos x \mathrm{d}x = \sin x + C$	$\int cp'(x)\mathrm{d}x = cp(x) + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int_{a}^{b} f'(x) dx = [f(x)]_{a}^{b} = f(b) - f(a)$
$\int \frac{1}{\cos^2 x} dx = \tan x + C$	Integration by substitution
$\int e^x \mathrm{d}x = e^x + C$	$\int \frac{1}{x} dx = \ln x + C$

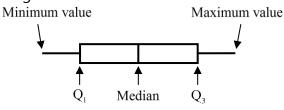
16 Applications of Integration

- ✓ Areas on x y plane, between x = a and x = b:
 - 1. $\int_{a}^{b} f(x) dx$: Area under the graph of f(x) and above the x-axis
 - 2. $-\int_{a}^{b} f(x) dx$: Area under the *x*-axis and above the graph of f(x)
 - 3. $\int_{a}^{b} (f(x) g(x)) dx$: Area under the graph of f(x) and above the graph of g(x)
- Applications in kinematics:
 - 1. a(t): Acceleration with respect to the time t
 - 2. $v(t) = \int a(t) dt$: Velocity
 - 3. $s(t) = \int v(t) dt$: Displacement
 - 4. $d = \int_{t_1}^{t_2} |v(t)| dt$: Total distance travelled between t_1 and t_2

17 Statistics

Data	Frequency	Data less than	Cumulative
		or equal to	frequency
10	f_1	10	f_1
20	f_2	20	$f_1 + f_2$
30	f_3	30	$f_1 + f_2 + f_3$

Relationship between frequencies and cumulative frequencies:

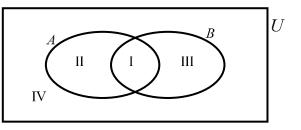

✓ Measures of central tendency for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:

1.
$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{x_1 + x_2 + x_3 + \dots + x_n}$$
: Mean

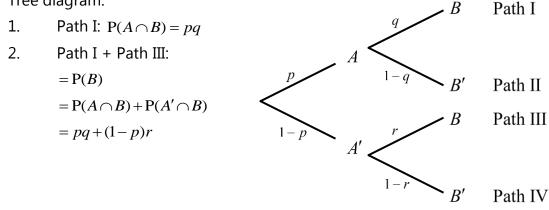
- 2. The datum or the average value of two data at the middle: Median
- 3. The datum appears the most: Mode
- ✓ Measures of dispersion for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:
 - 1. $x_n x_1$: Range
 - 2. Two subgroups A and B can be formed from the data set such that all data of the subgroup A are less than or equal to the median, while all data of the subgroup B are greater than or equal to the median
 - 3. $Q_1 =$ The median of the subgroup A: Lower quartile
 - 4. Q_3 = The median of the subgroup B: Upper quartile

5.
$$Q_3 - Q_1$$
: Inter-quartile range (IQR)

6.
$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$$
: Standard deviation



✓ A datum x is defined to be an outlier if $x < Q_1 - 1.5$ IQR or $x > Q_3 + 1.5$ IQR


- ✓ Coding of data:
 - 1. Only the mean, the median, the mode and the quartiles will change when each datum of the data set is added or subtracted by a value
 - 2. All measures of central tendency and measures of dispersion will change when each datum of the data set is multiplied or divided by a value

- ✓ Terminologies:
 - 1. U: Universal set
 - 2. A: Event
 - 3. *x*: Outcome of an event
 - 4. n(U): Total number of elements
 - 5. n(A): Number of elements in A
- Formulae for probability:
 - 1. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - 2. P(A') = 1 P(A)
 - 3. $P(A | B) = \frac{P(A \cap B)}{P(B)}$
 - 4. $P(A) = P(A \cap B) + P(A \cap B')$
 - 5. $P(A' \cap B') + P(A \cup B) = 1$
 - 6. $P(A \cup B) = P(A) + P(B)$ and $P(A \cap B) = 0$ if A and B are mutually exclusive
 - 7. $P(A \cap B) = P(A) \cdot P(B)$ and P(A | B) = P(A) if A and B are independent
- ✓ Venn diagram:
 - 1. Region I: $A \cap B$
 - 2. Region II: $A \cap B'$
 - 3. Region III: $A' \cap B$
 - 4. Region IV: $(A \cup B)'$

✓ Tree diagram:

19 Discrete Probability Distributions

 \checkmark Properties of a discrete random variable X :

	X	<i>x</i> ₁	<i>x</i> ₂	•••	X _n
	$\mathbf{P}(X=x)$	$\mathbf{P}(X=x_1)$	$\mathbf{P}(X=x_2)$	•••	$\mathbf{P}(X=x_n)$
L	$\mathbf{P}(X = x_1) + \mathbf{P}(X)$	$(X = x_2) + \dots + 1$	$P(X = x_n) = 1$		

- 2. $E(X) = x_1 P(X = x_1) + x_2 P(X = x_2) + \dots + x_n P(X = x_n)$: Expected value of X
- 3. E(X) = 0 if a fair game is considered

1.

Binomial Distribution

- ✓ Properties of a random variable $X \sim B(n, p)$ following binomial distribution:
 - 1. Only two outcomes from every independent trial (Success and failure)
 - 2. *n*: Number of trials
 - 3. *p* : Probability of success
 - 4. X : Number of successes in n trials

✓ Formulae for binomial distribution:

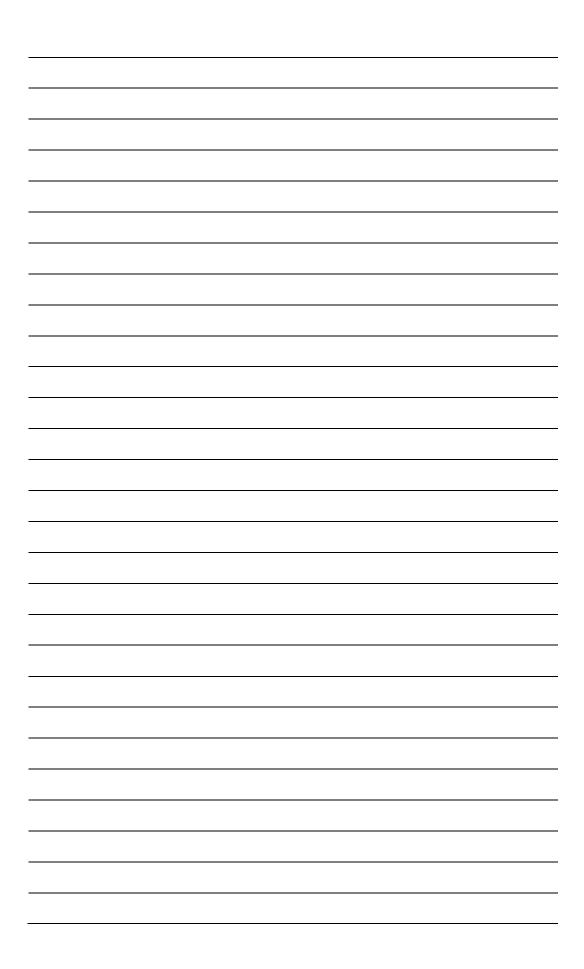
1.
$$P(X = r) = {n \choose r} p^r (1-p)^{n-r} \text{ for } 0 \le r \le n, r \in \mathbb{Z}$$

- 2. E(X) = np: Expected value of X
- 3. Var(X) = np(1-p): Variance of X
- 4. $\sqrt{np(1-p)}$: Standard deviation of X
- 5. $P(X \le r) = P(X < r+1) = 1 P(X \ge r+1)$

- ✓ Properties of a random variable $X \sim N(\mu, \sigma^2)$ following normal distribution:
 - 1. μ : Mean
 - 2. σ : Standard deviation
 - 3. The mean, the median and the mode are the same
 - 4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
 - 5. $P(X < \mu) = P(X > \mu) = 0.5$
 - 6. The total area under the curve is 1
- ✓ Standardization of a normal variable:
 - 1. $Z \sim N(0, 1^2)$: Standard normal distribution with mean 0 and standard deviation 1

2.
$$Z = \frac{X - \mu}{\sigma}$$
 for $X \sim N(\mu, \sigma^2)$

Bivariate Analysis


✓ Correlations:

	Strong	0.75 < <i>r</i> < 1	
Positive	Moderate	0.5 < r < 0.75	
	Weak 0 < r < 0.5		
N	lo	r = 0	
	Weak	-0.5 < r < 0	
Negative	Moderate	-0.75 < r < -0.5	
	Strong	-1 < r < -0.75	

where r is the correlation coefficient

- ✓ Linear regression:
 - 1. y = ax + b: Regression line of y on x
 - 2. x = ay + b: Regression line of x on y

Notes

