Analysis and Approaches Higher Level for IBDP Mathematics
 Practice Paper Set 1 - Paper 1 (120 Minutes)

Question - Answer Book

Instructions

1. This paper consists of TWO sections: A and B.
2. Attempt ALL questions. Write your answers in the spaces provided in this Question - Answer Book.
3. No calculator is allowed.
4. You are suggested to prepare a formula booklet of Analysis and Approaches for IBDP Mathematics when attempting the questions.
5. Supplementary answer sheets and graph papers will be supplied on request.
6. Unless otherwise specified, ALL working must be clearly shown.
7. Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
8. The diagrams in this paper are NOT necessarily drawn to scale.
9. Information to be read before you

	Marker's Use Only	Examiner's Use Only	
Question Number	Marks	Marks	Maximum Mark
Section A			
1			6
2			5
3			6
4			8
5			7
6			7
7			5
8			7
9			5
Section A Total			56
Section B			
10			14
11			20
12			20
Section B Total			54
Overall			
Paper 1 Total			110

Section A (56 marks)

1. There are 15 items in a data set. The sum of the items is 300 .
(a) Find the mean.

The variance of this data set is 9 . Each value in the set is multiplied by -2 .
(b) (i) Write down the value of the new mean.
(ii) Find the value of the new variance.
(iii) Hence, write down the value of the new standard deviation.
\qquad
2. A straight line L_{1} passes through the points $(8,0)$ and $(24,32)$.
(a) Find the equation of L_{1}, giving the answer in general form.
(b) The equation of another straight line, L_{2}, is given as x-ay $+2021=0$, $a \in \mathbb{R}$. If L_{1} and L_{2} are perpendicular, find a.
\qquad
3. (a) Show that $(2 n+1)^{2}+(2 n+3)^{2}+(2 n+5)^{2}=3\left(4 n^{2}+12 n+11\right)+2$, where $n \in \mathbb{Z}$.
(b) Hence, or otherwise, prove that the sum of the squares of any three consecutive odd numbers is greater than a multiple of 3 by 2 .
\qquad
4. Let $f(x)=p x^{3}+q x^{2}-2 x+1$. At $x=1$, the slope of the normal of the curve of f is $-\frac{1}{15}$. It is given that $f^{-1}(41)=2$, find the value of p and of q.
\qquad
5. The graph of f is given by $f(t)=a \sin b(t+2.5)+d, a>0, t \geq 0$.

When $t=2$, there is a maximum value of 37 , at P . When $t=11$, there is a minimum value of -5 . The graph of f is strictly decreasing at $2<t<11$.
(a) Show that $f(t)=21 \sin \frac{\pi}{9}(t+2.5)+16$.

The graph of f is then transformed to the graph of g by a horizontal stretch of scale factor 3 , followed by a translation of $\binom{17}{8}$. Let P^{\prime} be the image of P .
(b) Find the coordinates of P^{\prime}.
\qquad
6. Consider the function $f(x)=4 x^{4}+3 x^{2}-1, x \in \mathbb{R}$. The graph of f is translated one unit to the right and then stretched vertically with scale factor 3 to form the function $g(x)$.
(a) Express $g(x)$ in the form $a x^{4}+b x^{3}+c x^{2}+d x+e$, where a, b, c, d, $e \in \mathbb{Z}$.
(b) Hence, find the sum of the roots of the equation $g(x)=0$.
\qquad
7. Let $f(x)=\frac{2 x^{3}-5 x^{2}-37}{x+37}$, where $x>1$. Solve the inequality $1+f(|x|) \leq|x|$.
\qquad
8. Prove by mathematical induction that $\binom{2}{2}+\binom{3}{2}+\ldots+\binom{n}{2}=\frac{n(n+1)(n-1)}{6}$, $n \in \mathbb{Z}^{+}, n \geq 2$.
\qquad
9. The random variable X has the probability density function

$$
f(x)=\frac{1}{e^{2}-1} e^{3-x}, 1 \leq x \leq 3 .
$$

(a) Write down the mode.
(b) Show that the exact value of the median is $3-\ln \left(\frac{e^{2}+1}{2}\right)$.
\qquad

Section B (54 marks)

10. Let $f(x)=\cos ^{4} x, x \in \mathbb{R}$.
(a) (i) Write down the range of the function f.
(ii) Consider $f(x)=1,0 \leq x \leq 2 \pi$. Find the number of solutions to this equation.
(b) Find $f^{\prime}(x)$, giving your answer in the form $a \sin ^{p} x \cos ^{q} x$ where a, p, $q \in \mathbb{Z}$ 。
(c) Let $g(x)=2 \sin x$ for $0 \leq x \leq \pi$. Find the total area of the regions bounded by the graph of $y=f(x) g(x)$ and the x-axis.
\qquad
11. A function is defined as $h(x)=\sin x, x \in \mathbb{R}$.
(a) Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=h(x) \cdot(y+1), y>-1$, where $y=0$ when $x=0$, giving the answer in the form $y=f(x)$.
(b) By using the integrating factor approach, show that the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=h(x) \sqrt{1-(h(x))^{2}} \cdot(y+1)$, where $y=0$ when $x=0$, is $y=e^{\frac{1}{2} \sin ^{2} x}-1$.
\qquad
12. (a) Solve the equation $z^{6}+1=0, z \in \mathbb{C}$, giving the answers in modulus-argument form.
(b) Hence, solve the equation $z^{4}-z^{2}+1=0$.

Let $\lambda=\cos \frac{\pi}{6}+\mathrm{i} \sin \frac{\pi}{6}, p=\lambda^{3}+\lambda$ and $q=\lambda^{11}+\lambda^{9}$. It is given that $\lambda+\frac{1}{\lambda}=\sqrt{3}$.
(c) (i) Form a quadratic equation of $z, z \in \mathbb{C}$, with roots p and q.
(ii) Hence, form a quadratic equation of $z, z \in \mathbb{C}$, with roots $2 p$ and $2 q$.
\qquad
END OF PAPER

