SE Production

Lists of Resources when Revising IBDP Mathematics

Math AA Book 1 Solution		Math AI Book 1 Solution	
	CLICK HERE		CLICK HERE
Math AA Book 2 Solution		Math AI Book 2 Solution	
	CLICK HERE		CLICK HERE
Free Last Minute Formula \& Concept List		IBDP Mathematics Exam Info \& Skills	
	CLICK HERE		CLICK HERE
Math \& GDC Skills Video List		More Mock Papers?	
	CLICK HERE		CLICK HERE

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Chapter

Quadratic Functions

SUMMARY POINTS

\checkmark General form $y=a x^{2}+b x+c$, where $a \neq 0$:

$a>0$	The graph opens upward
$a<0$	The graph opens downward
c	y-intercept
$h=-\frac{b}{2 a}$	x-coordinate of the vertex
$k=a h^{2}+b h+c$	y-coordinate of the vertex
	Extreme value of y
$x=h$	Equation of the axis of symmetry

$\checkmark \quad$ Other forms:

1. $y=a(x-h)^{2}+k$: Vertex form
2. $y=a(x-p)(x-q)$: Intercept form with x-intercepts p and q

SUMMARY POINTs

$\checkmark \quad$ Solving the quadratic equation $a x^{2}+b x+c=0$, where $a \neq 0$:

1. Factorization by cross method
2. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$: Quadratic Formula
3. Method of completing the square
$\checkmark \quad$ The discriminant $\Delta=b^{2}-4 a c$ of $a x^{2}+b x+c=0$:

$\Delta>0$	The quadratic equation has two distinct real roots
$\Delta=0$	The quadratic equation has one double real root
$\Delta<0$	The quadratic equation has no real root

x-intercepts of a quadratic function $y=a x^{2}+b x+c$: Roots of $a x^{2}+b x+c=0$

Solutions of Chapter 2

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Paper 1 Section A - Find x-intercepts and the coordinates of the vertex in $y=a x^{2}+b x+c$

Example

Let $f(x)=3 x^{2}-12 x-15$. Part of the graph of f is shown below.

(a) Find the x-intercepts of the graph.
(b) (i) Write down the equation of the axis of symmetry.
(ii) Find the y-coordinate of the vertex.

Solution

(a) $\quad f(x)=0$
$3 x^{2}-12 x-15=0$
$3(x+1)(x-5)=0$
$x=-1$ or $x=5$
Thus, the x-intercepts are -1 and 5 .
(b) (i) $\quad x=2$
(ii) The y-coordinate of the vertex

$$
\begin{aligned}
& =3(2)^{2}-12(2)-15 \\
& =-27
\end{aligned}
$$

A2 N 2
(M1) for function equals to 0

A1

A1 N1
(M1) for substitution
A1 N 2

Exercise 2

1. Let $f(x)=x^{2}-6 x+8$. Part of the graph of f is shown below.

(a) Find the x-intercepts of the graph.
(b) (i) Write down the equation of the axis of symmetry.
(ii) Find the y-coordinate of the vertex.
2. Let $f(x)=x^{2}-11 x+10$. Part of the graph of f is shown below.

(a) Find the x-intercepts of the graph.
(b) (i) Write down the equation of the axis of symmetry.
(ii) Find the y-coordinate of the vertex.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. Let $f(x)=-2 x^{2}-14 x$. Part of the graph of f is shown below.

(a) Find the x-intercepts of the graph.
(b) (i) Write down the equation of the axis of symmetry.
(ii) Find the y-coordinate of the vertex.
4. Let $f(x)=13.5-1.5 x^{2}$. Part of the graph of f is shown below.

(a) Find the x-intercepts of the graph.
(b) (i) Write down the equation of the axis of symmetry.
(ii) Find the y-coordinate of the vertex.

Example

Let $f(x)=(x-2)(x+4)$.
(a) Write down the x-intercepts of the graph of f.
(b) Find the coordinates of the vertex of the graph of f.

Solution

(a) $x=2$ and $x=-4 \quad$ A2 2
[2]
(b) $\quad h=\frac{2+(-4)}{2}$
(M1) for correct formula
$h=-1$
A1
$k=(-1-2)(-1+4)$
(M1) for finding k
$k=-9$
Thus, the coordinates of the vertex are $(-1,-9)$. A1 N3

Exercise 3

1. Let $f(x)=(x-7)(x+5)$.
(a) Write down the x-intercepts of the graph of f.
(b) Find the coordinates of the vertex of the graph of f.
2. Let $f(x)=2(x+1)(x+6)$.
(a) Write down the x-intercepts of the graph of f.
(b) Find the coordinates of the vertex of the graph of f.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. Let $f(x)=a(x-p)(x-q)$.

The graph of $f(x)$ passes through the points $(5,0),(10,-7.5)$ and $(11,0)$.
(a) Write down the value of p and of q.
(b) Write down the equation of the axis of symmetry.
(c) Find the value of a.
4. Let $f(x)=a(p-x)(x-q)$.

The graph of $f(x)$ passes through the origin, $(15,30)$ and $(18,0)$.
(a) Write down the value of p and of q.
(b) Write down the equation of the axis of symmetry.
(c) Find the value of a.

Example

The equation $k x^{2}+(k-3) x-3=0$ has two distinct real roots. Find the possible values of k.

Solution

$$
\begin{array}{ll}
\Delta=b^{2}-4 a c & \text { (M1) for discriminant } \\
b^{2}-4 a c>0 & \text { R1 } \\
(k-3)^{2}-4(k)(-3)>0 & \text { (A1) for substitution } \\
k^{2}-6 k+9+12 k>0 & \\
k^{2}+6 k+9>0 & \text { A1 } \\
(k+3)^{2}>0 & \text { (M1) for factorizing } \\
k+3<0 \text { or } k+3>0 & \text { A1 } \\
k<-3 \text { or } k>-3 & \text { A2 N4 }
\end{array}
$$

Exercise 4

1. The equation $x^{2}-5 x+k^{2}=0$ has two equal real roots. Find the values of k.
2. The equation $x^{2}+4 k x+2 k=0$ has two distinct real roots. Find the possible values of k.
3. The equation $x^{2}+1=(1-k) x$ has no real root. Find the possible values of k.
4. The equation $4 x^{2}+(4 k+16) x+25 k=0$ has real roots. Find the possible values of k.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

5 Paper 1 Section B - Find the unknown

Example

A quadratic function f can be written in the form $f(x)=a(x-p)(x-7)$. The graph of f has axis of symmetry $x=3$ and y-intercept at $(0,-7)$.
(a) Find the value of p.
(b) Find the value of a.
(c) The line $y=m x-11$ is a tangent to the curve of f. Find the values of m.

Solution

(a) $\quad x=7$ is one of the x-intercepts.
$\frac{p+7}{2}=3$
$p=-1$
(b) $\quad-7=a(0-(-1))(0-7)$
$-7=-7 a$
$a=1$
(c) A tangent only intersects with a curve once.

It implies that the corresponding discriminant equals to 0 .
$(x-(-1))(x-7)=m x-11$
$x^{2}-6 x-7=m x-11$
$x^{2}+(-6-m) x+4=0$
$(-6-m)^{2}-4(1)(4)=0$
$36+12 m+m^{2}-16=0$
$m^{2}+12 m+20=0$
$(m+2)(m+10)=0 \quad$ (A1) for factorization
$m=-2$ or $m=-10$
(M1) for valid approach
(M1) for correct formula
A1 N2
[3]
(M1) for substitution
(A1) for simplification
A1 N2
[3]
(M1) for correct property
R1
(M1) for setting equation
(M1) for quadratic equation A1

A2 N0

Exercise 5

1. A quadratic function f can be written in the form $f(x)=a(x-p)(x+2)$. The graph of f has axis of symmetry $x=1$ and y-intercept at $(0,-32)$.
(a) Find the value of p.
(b) Find the value of a.
(c) The line $y=4 m x-57$ is a tangent to the curve of f. Find the values of m.
2. A quadratic function f can be written in the form $f(x)=a(x-4)(x-q)$. The graph of f has axis of symmetry $x=2.5$ and passes through $(5,-4)$.
(a) Find the value of q.
(b) Find the value of a.
(c) The line $y=m x$ is a tangent to the curve of f. Find the values of m.
3. A quadratic function f can be written in the form $f(x)=(x-p)(x-1)$. The graph of f passes through $(3,12)$.
(a) Find the value of p.
(b) Find the x-coordinate of the vertex of f.
(c) The line $y=m(x-1)$ is a tangent to the curve of f. Find the values of m.
4. A quadratic function f can be written in the form $f(x)=a(x-p)(x+p)$, where $p>0$. The graph of f passes through $(0,-9)$ and $(1,-5)$.
(a) Show that $a=\frac{9}{p^{2}}$.
(b) Hence, find the values of p and a.
(c) The line $y=-4 m x-(9+m)$ is a tangent to the curve of f. Find the values of m.

Example

Let $f(x)=x^{2}+2 k x$ and $g(x)=6 x-1$. The graphs of f and g intersect at two distinct points. Find the possible values of \boldsymbol{k}.

Solution

$x^{2}+2 k x=6 x-1$	(M1) for setting equation
$x^{2}+(2 k-6) x+1=0$	M1
$\Delta=b^{2}-4 a c>0$	(M1)R1 for discriminant
$(2 k-6)^{2}-4(1)(1)>0$	(A1) for substitution
$4 k^{2}-24 k+32>0$	
$k^{2}-6 k+8>0$	
$(k-2)(k-4)>0$	(M1) for factorization
$k<2$ or $k>4$	A2 N3

Exercise 6

1. Let $f(x)=-x^{2}-4 x$ and $g(x)=2 k x+1$. The graphs of \boldsymbol{f} and \boldsymbol{g} do not intersect with each other. Find the possible values of \boldsymbol{k}.
2. Let $f(x)=x^{2}-4 x-4 k$ and $g(x)=2 k x-16$. The graphs of f and g intersect at two distinct points. Find the possible values of \boldsymbol{k}.
3. Let $f(x)=x^{2}-1.5 k$ and $g(x)=-16+(8-k) x$. The graphs of f and g intersect with each other. Find the possible values of \boldsymbol{k}.
4. Let $f(x)=x^{2}+2 x-2 k$ and $g(x)=9-k x$. The graphs of f and g intersect with each other at most once. Find the possible values of \boldsymbol{k}.

Chapter

3

Functions

SUMMARY POINTs

$\checkmark \quad$ The function $y=f(x)$:

1. $\quad f(a)$: Functional value when $x=a$
2. Domain: Set of values of x
3. Range: Set of values of y
$\checkmark \quad f \circ g(x)=f(g(x))$: Composite function of $f(x)$ with $g(x)$
$\checkmark \quad$ Steps of finding the inverse function $y=f^{-1}(x)$ of $f(x)$:
4. Start from stating y in terms of x
5. Interchange x and y
6. Make y the subject in terms of x
$\checkmark \quad$ Properties of $y=f^{-1}(x)$:
7. $\quad f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$
8. The graph of $y=f^{-1}(x)$: Reflection of the graph of $y=f(x)$ about $y=x$

SUMMARY POINTs

\checkmark Summary of transformations:

	$f(x) \rightarrow f(x)+k:$ Translate upward by k units

$\checkmark \quad$ Properties of rational function $y=\frac{a x+b}{c x+d}$:

1. $y=\frac{1}{x}$: Reciprocal function
2. $y=\frac{a}{c}$: Horizontal asymptote
3. $x=-\frac{d}{c}$: Vertical asymptote

Solutions of Chapter 3

7

and the composite of two functions

Example

Let $f(x)=3 x+4$ and $g(x)=7 x^{2}-1$.
(a) Find $f^{-1}(x)$.
(b) Find $(g \circ f)(2)$.

Solution

(a) $y=3 x+4$
$\Rightarrow x=3 y+4 \quad$ (M1) for swapping variables
$x-4=3 y$
$y=\frac{x-4}{3}$
$\therefore f^{-1}(x)=\frac{x-4}{3}$
(b) $\quad f(2)$
$=3(2)+4$
$=10$
$(g \circ f)(2)$
$=g(10)$
$=7(10)^{2}-1$
$=699$
(M1) for substitution
(A1) for substitution
A1 N3

Exercise 7

1. Let $f(x)=8 x-1$ and $g(x)=x^{2}-5$.
(a) Find $f^{-1}(x)$.
(b) Find $(f \circ g)(5)$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

2. Let $f(x)=2 x-3$ and $g(x)=(x+5)^{2}$.
(a) Find $f^{-1}(x)$.
(b) Find $(g \circ f)(-2)$.
3. Let $f(x)=\sqrt{x+4}$, for $x \geq-4$.
(a) Find $f^{-1}(4)$.
(b) Let g be a function such that g^{-1} exists for all real numbers. Given that $g(96)=7$, find $\left(f \circ g^{-1}\right)(7)$.
4. Let $f(x)=\sqrt{2 x-1}$, for $x \geq \frac{1}{2}$.
(a) Find $f^{-1}(3)$.
(b) Let g be a function such that g^{-1} exists for all real numbers. Given that $g\left(\frac{3 a+1}{2}\right)=2$, where a is a constant, find $\left(f \circ g^{-1}\right)(2)$, give the answer in terms of a.

the graph about x or y-axis

Example

The following diagram shows the graph of a function f.

(a) Find $f^{-1}(2)$.
(b) Find $(f \circ f)(4)$.
(c) On the same diagram, sketch the graph of $y=-f(x)$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Solution

(a) $\quad f(3)=2$
$\therefore f^{-1}(2)=3$
(M1) for correct approach
A1 N2
[2]
(b) $\quad f(4)=3$
(M1) for correct approach
$(f \circ f)(4)$
$=f(3)$
$=2$
(A1) for composite function
A1 N3
(c) For correct y-intercept
A1
For any two correct points from $(-1,-1),(3,-2)$ and $(4,-3)$
A1 N2

Exercise 8

1. The following diagram shows the graph of a function f.

(a) Find $f^{-1}(-2)$.
(b) Find $(f \circ f)(5)$.
(c) On the same diagram, sketch the graph of $y=-f(x)$.
2. The following diagram shows the graph of a function f.

(a) Find $f^{-1}(2)$.
(b) Find $(f \circ f)(4)$.
(c) On the same diagram, sketch the graph of $y=f(-x)$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

3. The following diagram shows the graph of a function f.

(a) Find the range of f^{-1}.
(b) Find $\left(f^{-1} \circ f^{-1}\right)(1)$.
(c) On the same diagram, sketch the graph of $y=-f(x)$.
4. The following diagram shows the graph of a function f.

(a) Find the domain of f^{-1}.
(b) Find $\left(f^{-1} \circ f^{-1}\right)(3)$.
(c) On the same diagram, sketch the graph of $y=f(-x)$.

Example

The diagram below shows the graph of a function f, for $0 \leq x \leq 4$.

(a) Write down the value of
(i) $\quad f(1)$;
(ii) $f^{-1}(2)$.
(b) On the same diagram, sketch the graph of f^{-1}.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Solution

(a) (i) $f(1)=-2$ A1 N1
(ii) $\quad f^{-1}(2)=4$

A2 N 2
(b) For any two correct points from $(-4,0),(0,2)$
and (2, 4)
M1
For correct graph A2 N3

Exercise 9

1. The diagram below shows the graph of a function f, for $-4 \leq x \leq 3$.

(a) Write down the value of
(i) $\quad f(2)$;
(ii) $\quad f^{-1}(-1)$.
(b) On the same diagram, sketch the graph of f^{-1}.
2. The diagram below shows the graph of a function f, for $-4 \leq x \leq 4$.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

(a) Write down the value of
(i) $\quad f(-4)$;
(ii) $f^{-1}(-4)$.
(b) On the same diagram, sketch the graph of f^{-1}.
3. The diagram below shows the graph of a function f, for $-3 \leq x \leq 3$.

(a) On the same diagram, sketch the graph of f^{-1}.
(b) Let $g(x)=2 f(x+1)$. The point $\mathrm{A}(1,-1)$ on the graph of f is transformed to the point B on the graph of g. Find the coordinates of B.
4. The diagram below shows the graph of a function f, for $-5 \leq x \leq 4$.

(a) On the same diagram, sketch the graph of f^{-1}.
(b) Let $g(x)=f(2 x)-3$. The point $\mathrm{A}(-5,-2)$ on the graph of f is transformed to the point B on the graph of g. Find the coordinates of B.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

10
Paper 1 Section B - Transformations

in quadratic functions

Example

A quadratic function f is given by $f(x)=(x-h)^{2}+k$.

The vertex of the graph of f is at $(-3,-1)$, and the graph crosses the y-axis at the point ($0, c$).
(a) Write down the value of h and of k.
(b) Find the value of c.

Let $g(x)=-(x+5)^{2}+19$. The graph of g is obtained by a reflection of the graph of f in the x-axis, followed by a translation of $\binom{p}{q}$.
(c) Find the value of p and of q.
(d) Find the x-coordinates of the points of intersection of the graphs of f and g.

Solution

(a) $h=-3, k=-1$

A2 N 2
(b) $\quad f(x)=(x+3)^{2}-1$
c
$=f(0) \quad$ (M1) for substitution
$=(0+3)^{2}-1$
$=8 \quad$ A1 N 2
[2]
(c) $\quad g(x)=-\left[((x-p)+3)^{2}-1\right]+q$
$g(x)=-(x+(-p+3))^{2}+(1+q)$
$-p+3=5$
(M1) for translation
$p=-2$
$1+q=19$
$q=18$

A1 N 2
(M1) for translation
A1 N2
(d) $\quad f(x)=g(x)$

$$
\begin{array}{ll}
(x+3)^{2}-1=-(x+5)^{2}+19 & \text { M1 } \\
x^{2}+6 x+9-1=-x^{2}-10 x-25+19 & \text { (A1) for expansion } \\
x^{2}+6 x+8=-x^{2}-10 x-6 & \text { (A1) for simplification } \\
2 x^{2}+16 x+14=0 & \text { A1 } \\
x^{2}+8 x+7=0 & \\
(x+7)(x+1)=0 & \text { (A1) for factorization } \\
x=-7 \text { or } x=-1 & \text { A2 N3 }
\end{array}
$$

Exercise 10

1. A quadratic function f is given by $f(x)=-(x-h)^{2}+k$.

The vertex of the graph of f is at $(3,-1)$, and the graph crosses the y-axis at the point ($0, c$).
(a) Write down the value of h and of k.
(b) Find the value of c.

Let $g(x)=(x-1)^{2}-5$. The graph of g is obtained by a reflection of the graph of f in the x-axis, followed by a translation of $\binom{p}{q}$.
(c) Find the value of p and of q.
(d) Find the y-coordinates of the points of intersection of the graphs of f and g.
2. A quadratic function f is given by $f(x)=(x-h)^{2}+k$.

The vertex of the graph of f is at $(1,-6)$, and the graph crosses the y-axis at the point ($0, c$).
(a) Write down the value of h and of k.
(b) Find the value of c.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Let $g(x)=(x-3)^{2}-18$. The graph of g is obtained by a reflection of the graph of f in the y-axis, followed by a translation of $\binom{p}{q}$.
(c) Find the value of p and of q.
(d) Find the y-coordinate of the point of intersection of the graphs of f and g.
3. A quadratic function f is given by $f(x)=-(x-h)^{2}+k$.

The x-coordinate of the vertex of the graph of f is 1 , and the graph crosses the y-axis at the point $(0,3)$.
(a) Write down the value of h.
(b) Find the value of k.

Let $g(x)=-3 x^{2}+3$. The graph of g is obtained from f by a translation of $\binom{p}{q}$, followed by a vertical stretch of scale factor r.
(c) Find the value of p, of q and of r.
(d) Find the coordinates of the points of intersection of the graphs of f and g.
4. A quadratic function f is given by $f(x)=a x^{2}+b x+c$.

The vertex of the graph of f is at $(-2,2)$, and the graph crosses the y-axis at the point $(0,6)$.
(a) Find the value of a, of b and of c.

Let $g(x)=5 x^{2}-2$. The graph of g is obtained from f by a vertical stretch of scale factor r, followed by a translation of $\binom{p}{q}$.
(b) Find the value of p, of q and of r.
(c) Find the coordinates of the points of intersection of the graphs of f and g.

11
 Paper 2 Section A - Solve the composite equation

Example

Let $f(x)=x^{2}+3 x-4$ and $g(x)=x+6$, for $x \in \mathbb{R}$.
(a) Find $f(10)$.
(b) Find $(g \circ f)(x)$.
(c) Solve $(g \circ f)(x)=0$.

Solution

(a) $\quad f(10)$
$=(10)^{2}+3(10)-4$
$=126$
(M1) for substitution
A1 N2
(b) $\quad(g \circ f)(x)$
$=g(f(x))$
$=f(x)+6$
$=x^{2}+3 x-4+6$
$=x^{2}+3 x+2$
(M1) for composite function

A1 N2
(c) $\quad(g \circ f)(x)=0$
$x^{2}+3 x+2=0$
$(x+2)(x+1)=0$
(M1) for factorization
$x=-2$ or $x=-1$
A2 N3

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Exercise 11

1. Let $f(x)=2 x^{2}+8 x-7$ and $g(x)=x-17$, for $x \in \mathbb{R}$.
(a) Find $f(6)$.
(b) Find $(g \circ f)(x)$.
(c) Solve $(g \circ f)(x)=0$.
2. Let $f(x)=x^{2}+2 x-5$ and $g(x)=x+1$, for $x \in \mathbb{R}$.
(a) Find $f(-2)$.
(b) Find $(f \circ g)(x)$.
(c) Solve $(f \circ g)(x)=0$.
3. Let $f(x)=x^{3}$ and $g(x)=3 x-4$, for $x \in \mathbb{R}$.
(a) Find $(g \circ f)(x)$.
(b) Find $(g \circ f)(3)$.
(c) Solve $(g \circ f)(x)=1025$.
4. Let $f(x)=5 x+1$ and $g(x)=x^{4}$, for $x \in \mathbb{R}$.
(a) Find $(f \circ g)(x)$.
(b) Find $(f \circ g)(-3)$.
(c) Solve $(f \circ g)(x)=1281$.

Chapter

Exponential and Logarithmic Functions

SUMMARY POINTs

$\checkmark \quad y=a^{x}$: Exponential function, where $a \neq 1$

Methods of solving an exponential equation $a^{x}=b$:

1. Change b into a^{y} such that $a^{x}=a^{y} \Rightarrow x=y$
2. Take logarithm for both sides
$y=\log _{a} x$: Logarithmic function, where $a>0$
$y=\log x=\log _{10} x$: Common Logarithmic function
$\checkmark \quad y=\ln x=\log _{e} x$: Natural Logarithmic function, where $e=2.71828 \ldots$ is an exponential number

SUMMARY POINTs

$\checkmark \quad$ Laws of logarithm:

1. $x=a^{y} \Leftrightarrow y=\log _{a} x$
2. $\log _{a} 1=0$
3. $\log _{a} a=1$
4. $\log _{a} p+\log _{a} q=\log _{a} p q$
5. $\log _{a} p-\log _{a} q=\log _{a} \frac{p}{q}$
6. $\quad \log _{a} p^{n}=n \log _{a} p$
7. $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$
where a, b, c, p, q and $x>0$
$\checkmark \quad$ Properties of the graphs of $y=a^{x}$:

$a>1$	$0<a<1$
y-intercept $=1$	
y increases as x increases	y decreases as x increases
y tends to zero as x tends to negative infinity	y tends to zero as x tends to
positive infinity	

$\checkmark \quad$ Properties of the graphs of $y=\log _{a} x$:

$a>1$	$0<a<1$
x-intercept $=1$	
y increases as x increases	y decreases as x increases
x tends to zero as y tends to negative infinity	x tends to zero as y tends to positive infinity
Vertical asymptote: $x=0$	

Solutions of Chapter 4

Paper 1 Section A - Using laws of logarithm to perform simplifications

Example

Find the value of each of the following, giving your answer as an integer.
(a) $\quad \log _{9} 729$
(b) $\quad \log _{9} 162-\log _{9} 2$
(c) $\quad \log _{9} \frac{1}{36}+\log _{9} 4$

Solution

(a) $\quad \log _{9} 729$
$=\log _{9} 9^{3} \quad$ (A1) for valid approach
$=3$
A1 N2
(b) $\quad \log _{9} 162-\log _{9} 2$
$=\log _{9} \frac{162}{2}$
(A1) for correct formula
$=\log _{9} 81$
$=\log _{9} 9^{2}$
$=2$
(A1) for valid approach
A1 N2
(c) $\quad \log _{9} \frac{1}{36}+\log _{9} 4$
$=\log _{9} \frac{1}{9}$
$=\log _{9} 9^{-1}$
$=-1$
(A1) for correct formula
(A1) for valid approach
A1 N2

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Exercise 12

1. Find the value of each of the following, giving your answer as an integer.
(a) $\quad \log _{5} 25$
(b) $\quad \log _{5} 0.5+\log _{5} 10$
(c) $\quad \log _{5} 4-\log _{5} 500$
2. Find the value of each of the following, giving your answer as an integer.
(a) $\quad \log _{0.5} 2$
(b) $\quad \log _{0.5} \frac{1}{7}+\log _{0.5} 7$
(c) $\quad \log _{0.5} 24-\log _{0.5} 3$
3. Find the value of
(a) $\quad \log _{2} 112-\log _{2} 7$;
(b) $\quad 27^{\log _{3} 2}$.
4. Find the value of
(a) $\log _{3} \frac{1}{3}+\log _{3} 45-\log _{3} 15$;
(b) $25^{\log _{5} 7}$.

13

and inverse functions

Example

Let $f(x)=\log _{2} x^{2}$, for $x>0$.
(a) Show that $f^{-1}(x)=2^{\frac{1}{2} x}$.
(b) Write down the range of f^{-1}.

Let $g(x)=\log _{2} x^{3}$, for $x>0$.
(c) Find the value of $\left(f^{-1} \circ g\right)(4)$, giving your answer as an integer.

Solution

(a) $y=\log _{2} x^{2}$
$x=\log _{2} y^{2}$
$2^{x}=y^{2}$
$\sqrt{2^{x}}=y$
$2^{\frac{1}{2} x}=y$
$\therefore f^{-1}(x)=2^{\frac{1}{2} x}$
AG N0
(b) Range of $f^{-1}:\{y: y \in \mathbb{R}, y>0\}$

A1 N1
(c) $\quad g(4)$
$=\log _{2} 4^{3}$
$=\log _{2} 64$
$\left(f^{-1} \circ g\right)(4)$
$=f^{-1}(g(4))$
$=2^{\frac{1}{2}^{\left(\log _{2} 64\right)}}$
$=2^{\log _{2} 8}$
$=8$

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Exercise 13

1. Let $f(x)=\log _{5} \sqrt[3]{x}$, for $x>0$.
(a) Show that $f^{-1}(x)=5^{3 x}$.
(b) Write down the range of f^{-1}.

Let $g(x)=\log _{5} x^{2}$, for $x>0$.
(c) Find the value of $\left(f^{-1} \circ g\right)(5)$, giving your answer as an integer.
2. Let $f(x)=e^{4 x}$.
(a) Show that $f^{-1}(x)=0.25 \ln x$.
(b) Write down the domain of f^{-1}.

Let $g(x)=\left(e^{x}-1\right)^{3}$.
(c) Find the value of $\left(g \circ f^{-1}\right)(16)$, giving your answer as an integer.
3. Let $f(x)=\ln x+3$, for $x>0$.
(a) Show that $f^{-1}(x)=e^{x-3}$.
(b) Write down the range of f^{-1}.

Let $g(x)=e^{(x+1)(x-3)}$.
(c) Find the value of $(f \circ g)(2)$, giving your answer as an integer.
4. Let $f(x)=2^{3 x}$.
(a) Show that $f^{-1}(x)=\frac{1}{3} \log _{2} x$.
(b) Write down the range of f^{-1}.

Let $g(x)=\left(1+\log _{2} x\right)^{2}$.
(c) Express $(g \circ f)(x)$ in the form $a x^{2}+b x+c$, where a, b and c are integers.

and logarithmic equations

Example

Solve $\log _{3} x+\log _{3}(x+8)=2$, for $x>-8$.

Solution

$$
\begin{array}{ll}
\log _{3} x+\log _{3}(x+8)=2 & \\
\log _{3} x(x+8)=2 & \text { (A1) for correct formula } \\
\log _{3}\left(x^{2}+8 x\right)=2 & \\
x^{2}+8 x=3^{2} & \text { (A1) for valid approach } \\
x^{2}+8 x-9=0 & \text { A1 } \\
(x+9)(x-1)=0 & \text { (M1) for factorization } \\
x=-9 \text { (Rejected }) \text { or } x=1 & \text { A1 } \\
\therefore x=1 & \text { A2 } 2 \mathrm{~N} 3
\end{array}
$$

Exercise 14

1. Solve $\log _{2} 16 x-\log _{2}(2-x)=4$, for $0<x<2$.
2. Solve $2^{x^{2}} \cdot 2^{2(3 x+4)}=8$.
3. Consider $f(x)=\log _{k}\left(\frac{8 x-x^{2}}{4}\right)$, for $0<x<8$, where $k>0$. The equation $f(x)=2$ has exactly one solution. Find the value of k.
4. Consider $f(x)=\log _{3}\left(6 x-k x^{2}\right)$, for $0<x<\frac{6}{k}$, where $k>0$. The equation $f(x)=1$ has two distinct real solutions. Find the range of values of k.

Example

Let $f(x)=\frac{5-3 x^{2}}{\mathrm{e}^{x}}$, for $0 \leq x \leq 8$.
(a) Find the x-intercept of the graph of f.
(b) The graph of f has a minimum at the point A . Write down the coordinates of A.
(c) On the following grid, sketch the graph of f.

Solution

(a) $\quad f(x)=0$
(M1) for equation equals to 0
$\frac{5-3 x^{2}}{\mathrm{e}^{x}}=0$
$x=1.29$
A1 N2
(b) The minimum point is $(2.63,-1.14)$.
A2 N 2
(c) For correct domain and endpoints at $x=0$ and $x=8$
A1
For correct maximum point
A1
For correct concavity
A1 N3

Your Practice Set - Analysis and Approaches for IBDP Mathematics

Exercise 15

1. Let $f(x)=\frac{7 x^{2}-2}{\mathrm{e}^{x}}$, for $0 \leq x \leq 8$.
(a) Find the x-intercept of the graph of f.
(b) The graph of f has a maximum at the point A . Write down the coordinates of A.
(c) On the following grid, sketch the graph of f.

2. Let $f(x)=\frac{x^{3}+2 x+3}{\mathrm{e}^{x}}$, for $-1 \leq x \leq 7$.
(a) Find the x-intercept and the y-intercept of the graph of f.
(b) The graph of f has a maximum at the point A . Write down the coordinates of A.
(c) On the following grid, sketch the graph of f.

3. Let $f(x)=\mathrm{e}^{0.3 x}-3$, for $-5 \leq x \leq 5$.
(a) Find the x-intercept of the graph of f.
(b) Write down the equation of the horizontal asymptote of f.
(c) On the following grid, sketch the graph of f.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

4. Let $f(x)=\frac{\mathrm{e}^{x}}{4 x-6}$, for $-3 \leq x \leq 4$.
(a) The graph of f has a minimum at the point A . Write down the coordinates of A.
(b) Write down the equation of the vertical asymptote of f.
(c) On the following grid, sketch the graph of f.

Example

The number of insects in two colonies, A and B, starts increasing at the same time. The number of insects in colony A after t months is modeled by the function $A(t)=240 e^{0.3 t}$.
(a) Find the initial number of insects in colony A.
(b) Find the number of insects in colony A after seven months.
(c) How long does it take for the number of insects in colony A to reach 800 ?

The number of insects in colony B after t months is modeled by the function $B(t)=360 e^{k t}$.
(d) After ten months, there are 1000 insects in colony B. Find the value of k.
(e) The number of insects in colony A first exceeds the number of insects in colony B after n months, where $n \in \mathbb{Z}$. Find the value of n.

Solution

(a) Initial number of insects
$=240 e^{0.3(0)}$
$=240$
(A1) for substitution
A1 N2
(b) Number of insects in colony A after seven months
$=240 e^{0.3(7)}$
$=1959.880779$
$=1960$
(c) $\quad A(t)=800$
$240 e^{0.3 t}=800$
$240 e^{0.3 t}-800=0$
By considering the graph of $y=240 e^{0.3 t}-800 \quad$ (M1) for correct working
$t=4.0132427$
\therefore It takes 4.01 months.
(A1) for substitution
(A1) for correct working A1 N3
[3]
(A1) for setting equation

A1 N3

Your Practice Set - Analysis and Approaches for IBDP Mathematics

(d) $B(10)=1000$
$360 e^{10 k}=1000$
$360 e^{10 k}-1000=0$
By considering the graph of $y=360 e^{10 k}-1000$
$k=0.1021651$
$\therefore k=0.102$
(M1) for substitution
(M1) for correct working

A1 N3
(e) $\quad A(t)>B(t)$
(M1) for setting inequality
$A(t)-B(t)>0$
$240 e^{0.3 t}-360 e^{0.1021651 t}>0$
By considering the graph of
$y=240 e^{0.3 t}-360 e^{0.1021651 t}$
(M1) for correct working
$t>2.0495125$
(A1) for correct working
$\therefore n=3$
A1 N3

Exercise 16

1. The number of leopards and tigers in a forest start increasing at the same time.

The number of leopards in the forest after t years is modeled by the function $A(t)=2500 e^{0.075 t}$.
(a) Find the initial number of leopards.
(b) Find the number of leopards after ten years.
(c) How long does it take for the number of leopards to reach 8000 ?

The number of tigers in the forest after t years is modeled by the function $B(t)=k e^{\frac{180}{k} t}$, where $k<2000$.
(d) After ten years, there are 5000 tigers. Find the value of k.
(e) The number of tigers first exceeds the number of leopards after n years, where $n \in \mathbb{Z}$. Find the value of n.
2. The number of trams and the number of people using trams in a city is studied.

The number of trams in the city after t years is modeled by the function $A(t)=420 \times 1.15^{t}$.
(a) Find the initial number of trams.
(b) Find the number of trams after six years.
(c) How long does it take for the number of trams to reach 750?

The number of people using trams in the city after t years is modeled by the function $B(t)=\frac{4680000}{70 e^{-k t}+130}$.
(d) After five years, there are 27500 people using trams. Find the value of k.
(e) The number of trams first exceeds five times the number of people using trams after n years, where $n \in \mathbb{Z}$. Find the value of n.
3. The number of food delivery cars and the number of people using food delivery cars in a town is studied.

The number of food delivery cars in the town after t weeks is modeled by the function $A(t)=1050 \times 1.25^{t}$.
(a) Find the initial number of food delivery cars.
(b) Find the number of food delivery cars after sixteen weeks.
(c) How long does it take for the number of food delivery cars to reach 4200 ?

The number of people using food delivery cars in the town after t weeks is modeled by the function $B(t)=\frac{410000}{75 k+95 e^{-k t}}$.
(d) After twelve weeks, there are 4600 people using food delivery cars. Find the value of k.
(e) The number of food delivery cars first exceeds double the number of people using food delivery cars after n weeks, where $n \in \mathbb{Z}$. Find the value of n.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

4. The air pressure in two machines, A and B , are recorded in an experiment.

The air pressure in machine A after t minutes is modeled by the function $P(t)=4 e^{0.12 t}$.
(a) Find the air pressure in machine A after half an hour.
(b) How long does it take for the air pressure in machine A to reach 8 units?

The air pressure in machine B after t minutes is modeled by the function $Q(t)=Q_{0} e^{k t}$. It is recorded that the initial air pressure and the air pressure in machine B after half an hour are 3.5 units and 171 units respectively.
(c) Find the value of Q_{0} and of k.
(d) The sum of air pressures in two machines first exceeds 400 units after n minutes, where $n \in \mathbb{Z}$. Find the value of n.

Chapter

9

Equations of Straight Lines

SUMMARY POINTs

Consider the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ on a $x-y$ plane:

1. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$: Slope of $P Q$
2. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$: Distance between P and Q
3. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$: The mid-point of $P Q$
$\checkmark \quad$ Forms of straight lines with slope m and y-intercept c :
4. $y=m x+c$: Slope-intercept form
5. $A x+B y+C=0$: General form
$\checkmark \quad$ Ways to find the x-intercept and the y-intercept of a line:
6. Substitute $y=0$ and make x the subject to find the x-intercept
7. Substitute $x=0$ and make y the subject to find the y-intercept

Your Practice Set - Analysis and Approaches for IBDP Mathematics

30
 Paper 1 Section A - Finding the
 equation of a straight line

Example

A straight line L passes through the points $(3,2)$ and $(10,16)$.
(a) Find the equation of L, giving the answer in general form.
(b) Write down the x-intercept and the y-intercept of L.

Solution

(a) The gradient of L
$=\frac{16-2}{10-3} \quad$ (M1) for valid approach
$=2$
The equation of L :
$y-2=2(x-3)$
A1
$y-2=2 x-6$
$2 x-y-4=0 \quad$ A1 N2
(b) The x-intercept of L is 2

A1
The y-intercept of L is -4 A1 N2
(b) The y-intercept of L is -4

Exercise 30

1. A straight line L passes through the points $(10,6)$ and $(20,11)$.
(a) Find the equation of L, giving the answer in general form.
(b) Write down the x-intercept and the y-intercept of L.
2. A straight line L passes through the points $(-4,-8)$ and $(2,-26)$.
(a) Find the equation of L, giving the answer in general form.
(b) Write down the x-intercept and the y-intercept of L.
3. A straight line L_{1} passes through the points $(5,1)$ and $(17,37)$.
(a) Find the equation of L_{1}, giving the answer in general form.
(b) The equation of another straight line, L_{2}, is given as $3 x+y-100=0$. Are L_{1} and L_{2} parallel? Explain your answer.
4. A straight line L_{1} passes through the points $(-4,0)$ and $(4,40)$.
(a) Find the equation of L_{1}, giving the answer in general form.
(b) The equation of another straight line, L_{2}, is given as $x+5 y+150=0$. Are L_{1} and L_{2} perpendicular? Explain your answer.

Your Practice Set - Analysis and Approaches for IBDP Mathematics

31
 Paper 1 Section A - Finding the equations of

parallel and perpendicular lines

Example

The equation of a straight line L_{1} is given as $2 x+y-10=0$.
(a) Write down the gradient and the x-intercept of L_{1}.
(b) Find the equation of another straight line L_{2} such that L_{2} is parallel to L_{1} and L_{2} passes through $(4,8)$, giving the answer in general form.

Solution

(a) The gradient of L_{1} is -2 The x-intercept of L_{1} is 5 A1 A1 N2
(A1) for correct gradient
The equation of L_{2} :
$y-8=-2(x-4)$
$y-8=-2 x+8$
$2 x+y-16=0$

A1

A1 N2
[2]
(b) The gradient of L_{2} is -2

Exercise 31

1. The equation of a straight line L_{1} is given as $x-2 y+16=0$.
(a) Write down the gradient and the y-intercept of L_{1}.
(b) Find the equation of another straight line L_{2} such that L_{2} is parallel to L_{1} and L_{2} passes through $(-2,5)$, giving the answer in general form.
2. The equation of a straight line L_{1} is given as $3 x+2 y-4=0$.
(a) Write down the gradient and the x-intercept of L_{1}.
[2]
(b) Find the equation of another straight line L_{2} such that L_{2} is parallel to L_{1} and L_{2} passes through $(1,-7)$, giving the answer in general form.
3. The equation of a straight line L_{1} is given as $3 x+y+21=0$.
(a) Write down the gradient and the x-intercept of L_{1}.
(b) Find the equation of another straight line L_{2} such that L_{2} is perpendicular to L_{1} and they intersect at the x-axis, giving the answer in general form.
4. The equation of a straight line L_{1} is given as $2 x-4 y-17=0$.
(a) Write down the gradient and the y-intercept of L_{1}.
(b) Find the equation of another straight line L_{2} such that L_{2} is perpendicular to L_{1} and they intersect at the y-axis, giving the answer in general form.
