Formula List of Analysis and Approaches Higher Level for IBDP Mathematics

Analysis & Approaches	Analysis & Approaches
Standard Level	Higher Level
Applications & Interpretation	Applications & Interpretation
Standard Level	Higher Level

1 Standard Form

✓ Standard Form:

A number in the form $(\pm)a \times 10^k$, where $1 \le a < 10$ and k is an integer

Quadratic Functions

✓ General form $y = ax^2 + bx + c$, where $a \neq 0$:

<i>a</i> > 0	The graph opens upward
<i>a</i> < 0	The graph opens downward
С	y -intercept
$h = -\frac{b}{2a}$	x -coordinate of the vertex
$k = ah^2 + bh + c$	y -coordinate of the vertex
$\kappa - un + bn + c$	Extreme value of y
x = h	Equation of the axis of symmetry

✓ Other forms:

- 1. $y = a(x-h)^2 + k$: Vertex form
- 2. y = a(x-p)(x-q): Factored form with x-intercepts p and q

✓ Solving the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$:

1. Factorization by cross method

2.
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
: Quadratic Formula

3. Method of completing the square

✓ The discriminant $\Delta = b^2 - 4ac$ of $ax^2 + bx + c = 0$:

$\Delta > 0$	The quadratic equation has
	two distinct real roots
	The quadratic equation has
$\Delta = 0$	one double real root
	The quadratic equation has
$\Delta < 0$	no real root

✓ The *x*-intercepts of the quadratic function $y = ax^2 + bx + c$ are the roots of the corresponding quadratic equation $ax^2 + bx + c = 0$

3 Functions

- ✓ The function y = f(x):
 - 1. f(a): Functional value when x = a
 - 2. Set of values of *x* : Domain
 - 3. Set of values of *y* : Range
- ✓ $f \circ g(x) = f(g(x))$: Composite function when g(x) is substituted into f(x)
- ✓ Steps of finding the inverse function $y = f^{-1}(x)$ of f(x):
 - 1. Start from expressing y in terms of x
 - 2. Interchange *x* and *y*
 - 3. Make *y* the subject in terms of *x*
- ✓ Properties of $y = f^{-1}(x)$:
 - 1. $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
 - 2. The graph of $y = f^{-1}(x)$ is the reflection of the graph of y = f(x) about y = x

✓ Summary of transformations:

- ✓ Properties of rational function $y = \frac{ax+b}{cx+d}$:
 - 1. $y = \frac{1}{x}$: Reciprocal function
 - 2. $y = \frac{a}{c}$: Horizontal asymptote
 - 3. $x = -\frac{d}{c}$: Vertical asymptote
- Odd and even functions:
 - f(x) is odd if f(-x) = -f(x)
 - f(x) is even if f(-x) = f(x)

- \checkmark $f^{-1}(x)$ exists only when f(x) is one-to-one in the restricted domain
- ✓ Absolute function:

$$|f(x)| = \begin{cases} f(x) \text{ if } x \ge 0\\ -f(x) \text{ if } x < 0 \end{cases}$$

- ✓ $y = a^x$: Exponential function of base $a \neq 1$
- ✓ Methods of solving an exponential equation $a^x = b$:
 - 1. Change *b* into a^y such that $a^x = a^y \Longrightarrow x = y$
 - 2. Take logarithm for both sides
- \checkmark $y = \log_a x$: Logarithmic function of base a > 0
- \checkmark $y = \log x = \log_{10} x$: Common Logarithmic function
- ✓ $y = \ln x = \log_e x$: Natural Logarithmic function, where e = 2.71828... is an exponential number
- ✓ Laws of logarithm, where a, b, c, p, q, x > 0:
 - 1. $x = a^y \Leftrightarrow y = \log_a x$
 - 2. $\log_a 1 = 0$
 - $3. \qquad \log_a a = 1$
 - 4. $\log_a p + \log_a q = \log_a pq$

5.
$$\log_a p - \log_a q = \log_a \frac{p}{q}$$

 $6. \qquad \log_a p^n = n \log_a p$

7.
$$\log_b a = \frac{\log_c a}{\log_c b}$$

✓ Properties of the graphs of $y = a^x$:

a > 1	0 < <i>a</i> < 1	
y-intercept=1		
y increases as x increases	y decreases as x increases	
y tends to zero as x tends to negative infinity	y tends to zero as x tends to positive infinity	
Horizontal asymptote: $y = 0$		

✓ Properties of the graphs of $y = \log_a x$:

<i>a</i> >1	0 < <i>a</i> < 1	
x-intercept=1		
y increases as x increases	y decreases as x increases	
x tends to zero as y tends to	x tends to zero as y tends to	
negative infinity	positive infinity	
Vertical asymptote: $x = 0$		

Polynomials

- ✓ Number of roots of the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$: The maximum number of roots of f(x) = 0 is *n*
- ✓ Sum and product of roots of $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$:
 - 1. $r_1, r_2, ..., r_n$: Roots
 - 2. $r_1 + r_2 + \dots + r_n = -\frac{a_{n-1}}{a_n}$
 - 3. $r_1 r_2 r_3 \cdots r_{n-1} r_n = (-1)^n \frac{a_0}{a_n}$
- ✓ Factor theorem:

(x-a) is a factor of f(x) if f(a) = 0(px-q) is a factor of f(x) if $f\left(\frac{q}{p}\right) = 0$ ✓ Remainder theorem:

f(a) is the remainder when f(x) is divided by (x-a) $f\left(\frac{q}{p}\right)$ is the remainder when f(x) is divided by (px-q)

✓ Partial fractions:

1.
$$\frac{ax+b}{(cx+d)(ex+f)}$$
 can be expressed as $\frac{P}{cx+d} + \frac{Q}{ex+f}$
2. $\frac{ax+b}{(cx+d)^2}$ can be expressed as $\frac{P}{cx+d} + \frac{Q}{(cx+d)^2}$

$$\checkmark \qquad \begin{cases} ax + by = c \\ dx + ey = f \end{cases} : 2 \times 2 \text{ system} \end{cases}$$

$$\checkmark \qquad \begin{cases} ax + by + cz = d \\ ex + fy + gz = h : 3 \times 3 \text{ system} \\ ix + jy + kz = l \end{cases}$$

✓ The above systems can be solved by PlySmlt2 in TI-84 Plus CE

- ✓ Row operations of a system with row R_i :
 - 1. Multiply the constant k to the row R_i (kR_i)
 - 2. Add the row R_i to the row R_i ($R_i + R_i$)
 - 3. Add the multiple of the row R_i to the row R_j ($kR_i + R_j$)
- ✓ Number of solutions of a system with the last row az = b after row operation:
 - 1. The system has a unique solution if $a \neq 0$
 - 2. The system has no solution if a = 0 and $b \neq 0$
 - 3. The system has infinitely number of solutions if a = 0 and b = 0

- ✓ Properties of an arithmetic sequence u_n :
 - 1. u_1 : First term
 - 2. $d = u_2 u_1 = u_n u_{n-1}$: Common difference
 - 3. $u_n = u_1 + (n-1)d$: General term (*n* th term)
 - 4. $S_n = \frac{n}{2} [2u_1 + (n-1)d] = \frac{n}{2} [u_1 + u_n]$: The sum of the first *n* terms

$$\checkmark \qquad \sum_{r=1}^{n} u_r = u_1 + u_2 + u_3 + \dots + u_{n-1} + u_n$$
: Summation sign

- ✓ Properties of a geometric sequence u_n :
 - 1. u_1 : First term
 - 2. $r = u_2 \div u_1 = u_n \div u_{n-1}$: Common ratio
 - 3. $u_n = u_1 \times r^{n-1}$: General term (*n* th term)

4.
$$S_n = \frac{u_1(1-r^n)}{1-r}$$
: The sum of the first *n* terms

5.
$$S_{\infty} = \frac{u_1}{1-r}$$
: The sum to infinity, given that $-1 < r < 1$

- \checkmark Properties of the *n* factorial *n*!:
 - 1. $n!=n\times(n-1)\times(n-2)\times\cdots\times3\times2\times1$
 - 2. 0!=1
 - $3. \qquad n! = n \times (n-1)!$

✓

Properties of the combination coefficient $\binom{n}{r}$:

1.
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

2.
$$\binom{n}{0} = \binom{n}{n} = 1$$

3.
$$\binom{n}{1} = \binom{n}{n-1} = n$$

4.
$$\binom{n}{r} = \binom{n}{n-r} = \frac{n(n-1)\cdots(n-r+1)}{r!}$$

✓ The binomial theorem:

$$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n-1}a^{1}b^{n-1} + \binom{n}{n}a^{0}b^{n}$$
$$= \sum_{r=0}^{n}\binom{n}{r}a^{n-r}b^{r}, \text{ where the } (r+1) \text{ -th term} = \binom{n}{r}a^{n-r}b^{r}$$

✓ Extended binomial theorem for |x| < 1:

$$(1+x)^{n} = 1 + nx + \binom{n}{2}x^{2} + \binom{n}{3}x^{3} + \cdots$$
$$(1+x)^{n} = 1 + nx + \frac{(n)(n-1)}{(2)(1)}x^{2} + \frac{(n)(n-1)(n-2)}{(3)(2)(1)}x^{3} + \cdots$$

10 Mathematical Induction

- ✓ Steps of proving by mathematical induction:
 - 1. Prove that the statement P(n) is true when n = 1
 - 2. Assume that P(n) is true when n = k
 - 3. Prove that the statement P(n) is true when n = k+1
 - 4. Conclude that P(n) is true for all positive integer n
- Types of mathematical induction:
 - 1. General case
 - 2. Divisibility

11 Proofs and Identities

- ✓ Identity of x: The equivalence of two expressions for all values of x
 ≡: Identity sign
- ✓ Types of proofs:
 - 1. Prove by contradiction
 - 2. Prove by counter example

✓ Consider the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a *x* - *y* plane:

1.
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
: Slope of *PQ*

2. $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$: Distance between *P* and *Q*

3.
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
: The mid-point of *PQ*

- \checkmark Forms of straight lines with slope *m* and *y*-intercept *c*:
 - 1. y = mx + c: Slope-intercept form
 - 2. Ax + By + C = 0: General form
- \checkmark Ways to find the *x*-intercept and the *y*-intercept of a line:
 - 1. Substitute y = 0 and make x the subject to find the x-intercept
 - 2. Substitute x = 0 and make y the subject to find the y-intercept

13 Trigonometry

✓ Trigonometric identities:

1.
$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$

- 2. $\sin^2 \theta + \cos^2 \theta \equiv 1$
- ✓ Double angle formula:
 - 1. $\sin 2\theta = 2\sin \theta \cos \theta$
 - 2. $\cos 2\theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta = \cos^2 \theta \sin^2 \theta$
- ✓ ASTC diagram

	v
$S (90^{\circ} < \theta < 180^{\circ})$	$A(0^\circ\!<\!\theta\!<\!90^\circ)$
$\sin\theta > 0$	$\sin\theta > 0$
$\cos\theta < 0$	$\cos\theta > 0$
$\tan\theta < 0$	$\tan\theta > 0$
	x
$T (180^\circ < \theta < 270^\circ)$	$C (270^{\circ} < \theta < 360^{\circ})$
$T (180^\circ < \theta < 270^\circ)$ $\sin \theta < 0$	$C (270^{\circ} < \theta < 360^{\circ})$ $\sin \theta < 0$
$T (180^{\circ} < \theta < 270^{\circ})$ $\sin \theta < 0$ $\cos \theta < 0$	$C (270^{\circ} < \theta < 360^{\circ})$ $\sin \theta < 0$ $\cos \theta > 0$
$T (180^{\circ} < \theta < 270^{\circ})$ $\sin \theta < 0$ $\cos \theta < 0$ $\tan \theta > 0$	$C (270^{\circ} < \theta < 360^{\circ})$ $\sin \theta < 0$ $\cos \theta > 0$ $\tan \theta < 0$

	1.	Amplitude = 1
$y \qquad y = \sin x$	2.	$Period = 360^{\circ}$
······································	3.	$-1 \le \sin x \le 1$
O 180° x -1 x		
y = 200 r	1.	Amplitude = 1
$y = \cos x$	2.	$Period = 360^{\circ}$
1	3.	$-1 \le \cos x \le 1$
O 90° 270° $x-1$		
$y = \tan x$	1.	Period=180°
	2.	$\tan x \in \mathbb{R}$
	3.	Vertical asymptotes:
		$x = 90^{\circ}, \ x = 270^{\circ}$
$\begin{array}{c c} & 90^{\circ} & 270^{\circ} \\ \hline \\ $		

✓ Properties of graphs of trigonometric functions:

✓ Properties of a general trigonometric function $y = A \sin B(x - C) + D$:

1.
$$A = \frac{y_{\text{max}} - y_{\text{min}}}{2}$$
: Amplitude

2.
$$B = \frac{2\pi}{\text{Period}}$$

$$3. \qquad D = \frac{y_{\max} + y_{\min}}{2}$$

4. *C* can be found by substitution of a point on the graph

✓ Reciprocal trigonometric ratios:

1.
$$\csc \theta = \frac{1}{\sin \theta}$$

2. $\sec \theta = \frac{1}{\cos \theta}$
3. $\cot \theta = \frac{1}{\tan \theta}$

✓ Inverse trigonometric functions:

1.
$$f(x) = \sin x \Rightarrow f^{-1}(x) = \sin^{-1} x = \arcsin x$$

2.
$$g(x) = \cos x \Rightarrow g^{-1}(x) = \cos^{-1} x = \arccos x$$

3.
$$h(x) = \tan x \Longrightarrow h^{-1}(x) = \tan^{-1} x = \arctan x$$

✓ More trigonometric identities:

1.
$$\sec^2\theta = 1 + \tan^2\theta$$

2. $\csc^2\theta = 1 + \cot^2\theta$

✓
$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$
: Double angle formula for tangent ratio

$y = \operatorname{cosec} x$	1.	$Period = 2\pi$
<i>y</i>	2.	$\csc x \ge 1$ or
		$\csc x \le -1$
	3.	Vertical asymptotes:
$\frac{1}{3\pi/2}$		$x = n\pi$, $n \in \mathbb{Z}$
$\begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 0 & \pi/2 & \pi \end{bmatrix} \begin{bmatrix} 2\pi \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2\pi \\ 1 & 1 \end{bmatrix}$		
$v = \sec x$	1.	$Period = 2\pi$
y y	2.	$\sec x \ge 1$ or $\sec x \le -1$
	3.	Vertical asymptotes:
		$x = n\pi + \frac{\pi}{2}, \ n \in \mathbb{Z}$
$-1 \bigcirc \pi \sqrt{2} \qquad \pi \qquad 3\pi/2 \qquad 2\pi^{-1}$		
$v = \cot x$	1.	$Period = \pi$
y y	2.	$\cot x \in \mathbb{R}$
	3.	Vertical asymptotes:
		$x=n\pi$, $n\in\mathbb{Z}$
$\pi/2$ $3\pi/2$ x		
$\left \begin{array}{c}O\\\\\end{array}\right $		

✓ Properties of graphs of reciprocal trigonometric functions:

✓ Properties of graphs of inverse trigonometric functions:

✓ Symmetric properties of trigonometric functions:

1. $\sin(-x) = -\sin x \Longrightarrow \csc(-x) = -\csc x$

2. $\cos(-x) = \cos x \Longrightarrow \sec(-x) = \sec x$

3. $\tan(-x) = -\tan x \Longrightarrow \cot(-x) = -\cot x$

✓ Compound angle formula:

- 1. $\sin(A+B) = \sin A \cos B + \cos A \sin B$
- 2. $\sin(A-B) = \sin A \cos B \cos A \sin B$
- 3. $\cos(A+B) = \cos A \cos B \sin A \sin B$
- 4. $\cos(A-B) = \cos A \cos B + \sin A \sin B$

5.
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

6.
$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\checkmark$$
 Consider a triangle *ABC*:

1. $\frac{\sin A}{a} = \frac{\sin B}{b}$ or $\frac{a}{\sin A} = \frac{b}{\sin B}$: Sine rule Note: The ambiguous case exists if two sides and an angle are known, and the angle is opposite to the shorter known side

2. $a^2 = b^2 + c^2 - 2bc \cos A$ or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$: Cosine rule

3. $\frac{1}{2}ab\sin C$: Area of the triangle *ABC*

 \checkmark $\frac{x^{\circ}}{180^{\circ}} = \frac{y \text{ rad}}{\pi \text{ rad}}$: Method of conversions between degree and radian

- ✓ Consider a sector *OPRQ* with centre *O*, radius *r* and ∠*POQ* = θ in radian:
 - 1. $r\theta$: Arc length PQ

2.
$$\frac{1}{2}r^2\theta$$
: Area of the sector *OPRQ*

3. $\frac{1}{2}r^2(\theta - \sin\theta)$: Area of the segment *PRQ*

15 Areas and Volumes

- $\checkmark \qquad \text{For a cube of side length } l:$
 - 1. $6l^2$: Total surface area
 - 2. l^3 : Volume
- \checkmark For a cuboid of side lengths a, b and c:
 - 1. 2(ab+bc+ac): Total surface area
 - 2. *abc*: Volume
- \checkmark For a prism of height *h* and cross-sectional area *A*:
 - 1. *Ah*: Volume

- \checkmark For a cylinder of height *h* and radius *r*:
 - 1. $2\pi r^2 + 2\pi rh$: Total surface area
 - 2. $2\pi rh$: Lateral surface area
 - 3. $\pi r^2 h$: Volume
- \checkmark For a pyramid of height *h* and base area *A*:
 - 1. $\frac{1}{3}Ah$: Volume
- \checkmark For a circular cone of height h and radius r:
 - 1. $l = \sqrt{r^2 + h^2}$: Slant height
 - 2. $\pi r^2 + \pi rl$: Total surface area
 - 3. πrl : Curved surface area
 - 4. $\frac{1}{3}\pi r^2 h$: Volume
- \checkmark For a sphere of radius r:
 - 1. $4\pi r^2$: Total surface area
 - 2. $\frac{4}{3}\pi r^3$: Volume
- \checkmark For a hemisphere of radius r:
 - 1. $3\pi r^2$: Total surface area
 - 2. $2\pi r^2$: Curved surface area
 - 3. $\frac{2}{3}\pi r^3$: Volume

L6 Vectors

Terminologies of vectors:

 \overrightarrow{AB} : Vector of length AB with initial point A and terminal point B

 \vec{OP} : Position vector of P, where O is the origin

 $\begin{vmatrix} \vec{AB} \end{vmatrix}$: Magnitude (length) of \vec{AB}

$$\hat{\mathbf{v}} = \frac{1}{|\mathbf{v}|} \mathbf{v}$$
: Unit vector parallel to \mathbf{v} , with $|\hat{\mathbf{v}}| = 1$

0: Zero vector

i: Unit vector along the positive *x* -axis

- **j**: Unit vector along the positive y -axis
- \mathbf{k} : Unit vector along the positive z-axis

$$\checkmark \qquad \text{A vector } \mathbf{v} \text{ can be expressed as } \mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} \text{ or } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Properties of vectors:

1.
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

2.
$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \pm \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_1 \pm v_1 \\ u_2 \pm v_2 \\ u_3 \pm v_3 \end{pmatrix}$$

3. **v** and $k\mathbf{v}$ are in the same direction if k > 0

4. **v** and $k\mathbf{v}$ are in opposite direction if k < 0

5.
$$k \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} kv_1 \\ kv_2 \\ kv_3 \end{pmatrix}$$

✓ Properties of the scalar product $\mathbf{u} \cdot \mathbf{v}$ of $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ where θ is the

angle between \mathbf{u} and \mathbf{v} :

1.
$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

- 2. $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$
- 3. $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$
- 4. **u** and **v** are in the same direction if $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}|$
- 5. **u** and **v** are in opposite direction if $\mathbf{u} \cdot \mathbf{v} = -|\mathbf{u}||\mathbf{v}|$
- 6. **u** and **v** are perpendicular if $\mathbf{u} \cdot \mathbf{v} = 0$
- 7. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 8. $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$

✓ Properties of the vector product $\mathbf{u} \times \mathbf{v}$ of $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ where θ is the

angle between **u** and **v**:

1.
$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} = |\mathbf{u}| |\mathbf{v}| \sin \theta \hat{\mathbf{n}}$$
, where $\hat{\mathbf{n}} / / (\mathbf{u} \times \mathbf{v})$

2.
$$\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$$

3.
$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$
, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$

- 4. $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$, $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ and $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$
- 5. **u** and **v** are parallel if $\mathbf{u} \times \mathbf{v} = 0$
- 6. **u** and **v** are perpendicular if $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}|$

7.
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

 \checkmark The area of the parallelogram with adjacent sides \vec{AB} and \vec{AD} is $|\vec{AB} \times \vec{AD}|$

- ✓ The area of the triangle with adjacent sides \vec{AB} and \vec{AD} is $\frac{1}{2} | \vec{AB} \times \vec{AD} |$
- ✓ The volume of the parallelepiped formed by \vec{AB} , \vec{AD} and \vec{AF} is $\left| \left(\vec{AB} \times \vec{AD} \right) \cdot \vec{AF} \right|$

✓

Forms of the straight line with fixed point $A(a_1, a_2, a_3)$ and direction vector $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$:

1.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + t \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \ t \in \mathbb{R}$$

2.
$$\begin{cases} x = a_1 + b_1 t \\ y = a_2 + b_2 t : \text{Parametric form} \\ z = a_3 + b_3 t \end{cases}$$

3.
$$\frac{x-a_1}{b_1} = \frac{y-a_2}{b_2} = \frac{z-a_3}{b_3} (=t)$$
: Cartesian equations

- ✓ Intersections of two lines:
 - 1. Intersect at one point (One intersection)
 - 2. Skew (No intersection)
 - 3. Parallel (No intersection)
 - 4. Coincide (Infinite number of intersections)

✓ Forms of the plane with fixed point A(a_1, a_2, a_3) and normal vector $\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$:

1.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

2. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \mathbf{u} + \mu \mathbf{v}, \ \lambda, \ \mu \in \mathbb{R}, \text{ where } \mathbf{u} \text{ and } \mathbf{v} \text{ are two non-parallel}$

vectors on the plane

- 3. $n_1x + n_2y + n_3z = a_1n_1 + a_2n_2 + a_3n_3$: Cartesian form
- ✓ Intersections of two planes:
 - 1. Intersect at one line
 - 2. Parallel (No intersection)
 - 3. Coincide (Infinite number of intersections)

- ✓ Terminologies of complex numbers: $i = \sqrt{-1}$: Imaginary unit z = a + bi: Complex number in Cartesian form a: Real part of z b: Imaginary part of z $z^* = a - bi$: Conjugate of z = a + bi $|z| = r = \sqrt{a^2 + b^2}$: Modulus of z = a + bi $\arg(z) = \theta = \arctan \frac{b}{a}$: Argument of z = a + bi
- Properties of Argand diagram:
 1. Real axis: Horizontal axis
 - 2. Imaginary axis: Vertical axis

- ✓ Forms of complex numbers:
 - 1. z = a + bi: Cartesian form
 - 2. $z = r(\cos\theta + i\sin\theta) = r \operatorname{cis} \theta$: Modulus-argument form
 - 3. $z = re^{i\theta}$: Euler form
- ✓ Properties of moduli and arguments of complex numbers z_1 and z_2 :
 - **1**. $|z_1 z_2| = |z_1| |z_2|$

2.
$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$

3. $\arg(z_1 z_2) = \arg z_1 + \arg z_2$

4.
$$\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$$

✓ If z = a + bi is a root of the polynomial equation p(z) = 0, then $z^* = a - bi$ is also a root of p(z) = 0

- ✓ The roots of the equation $z^n = r \operatorname{cis} \theta$ are $z = r^{\frac{1}{n}} \operatorname{cis} \frac{\theta + 2k\pi}{n}$, $k = 0, 1, 2, \dots, n-1$
- ✓ De Moivre's theorem: If $z = rcis\theta$, then $z^n = r^n cisn\theta$

- ✓ Derivatives of a function y = f(x):
 - 1. $\frac{dy}{dx} = f'(x)$: First derivative
 - 2. $\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = f''(x)$: Second derivative
 - 3. $\frac{d^n y}{dx^n} = f^{(n)}(x)$: *n*-th derivative
- Rules of differentiation:

$f(x) = x^n \Longrightarrow f'(x) = nx^{n-1}$	$f(x) = p(x) + q(x) \Longrightarrow f'(x) = p'(x) + q'(x)$
$f(x) = \sin x \Longrightarrow f'(x) = \cos x$	$f(x) = cp(x) \Longrightarrow f'(x) = cp'(x)$
$f(x) = \cos x \Longrightarrow f'(x) = -\sin x$	$f(x) = p(q(x)) \Longrightarrow f'(x) = p'(q(x)) \cdot q'(x)$
$f(x) = \tan x \Longrightarrow f'(x) = \frac{1}{\cos^2 x}$	f(x) = p(x)q(x) $\Rightarrow f'(x) = p'(x)q(x) + p(x)q'(x)$
$f(x) = e^x \Longrightarrow f'(x) = e^x$	$f(x) = \frac{p(x)}{q(x)}$
$f(x) = \ln x \Longrightarrow f'(x) = \frac{1}{x}$	$\Rightarrow f'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{(q(x))^2}$

- ✓ Relationships between graph properties and the derivatives:
 - 1. f'(x) > 0 for $a \le x \le b$: f(x) is increasing in the interval
 - 2. f'(x) < 0 for $a \le x \le b$: f(x) is decreasing in the interval
 - 3. f'(a) = 0: (a, f(a)) is a stationary point of f(x)
 - 4. f'(a) = 0 and f'(x) changes from positive to negative at x = a: (a, f(a)) is a maximum point of f(x)
 - 5. f'(a) = 0 and f'(x) changes from negative to positive at x = a: (a, f(a)) is a minimum point of f(x)
 - 6. f''(a) = 0 and f''(x) changes sign at x = a: (a, f(a)) is a point of inflexion of f(x)
- ✓ Slopes of tangents and normals:
 - 1. f'(a): Slope of tangent at x = a
 - 2. $\frac{-1}{f'(a)}$: Slope of normal at x = a
- ✓ Differentiation by first principle:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

More differentiation rules:

$f(x) = \tan x \Longrightarrow f'(x) = \sec^2 x$	$f(x) = \cot x \Longrightarrow f'(x) = -\csc^2 x$
$f(x) = \sec x \Longrightarrow f'(x) = \sec x \tan x$	$f(x) = \csc x \Longrightarrow f'(x) = -\csc x \cot x$
$f(x) = a^x \Longrightarrow f'(x) = a^x \ln a$	$f(x) = \log_a x \Longrightarrow f'(x) = \frac{1}{x \ln a}$
$f(x) = \arcsin x \Rightarrow f'(x) = \frac{1}{\sqrt{1 - x^2}}$	$f(x) = \arccos x \Rightarrow f'(x) = -\frac{1}{\sqrt{1-x^2}}$
$f(x) = \arctan x \Longrightarrow f'(x) = \frac{1}{1+x^2}$	

Implicit differentiation:

$$F(x, y) = G(x, y) \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}x} F(x, y) = \frac{\mathrm{d}}{\mathrm{d}x} G(x, y)$$

Applications of Differentiation

- Equations of tangents and normals: \checkmark
 - 1. y-f(a) = f'(a)(x-a): Equation of tangent at x = a

2.
$$y-f(a) = \left(\frac{-1}{f'(a)}\right)(x-a)$$
: Equation of normal at $x = a$

- $\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\mathrm{d}N}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$: Rate of change of N with respect to the time t \checkmark
- \checkmark Tests for optimization:
 - First derivative test 1.
 - 2. Second derivative test
- ✓ Applications in kinematics:
 - s(t): Displacement with respect to the time t 1.
 - v(t) = s'(t): Velocity 2.
 - 3. a(t) = v'(t): Acceleration
- \checkmark Properties of rate of change:

1.
$$\frac{dN}{dt} = \frac{dN}{dx} \cdot \frac{dx}{dt}$$

2.
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Integration

- Integrals of a function y = f(x): \checkmark
 - $\int f(x) dx$: Indefinite integral of f(x)1.
 - $\int_{a}^{b} f(x) dx$: Definite integral of f(x) from a to b 2.

✓ Rules of integration:

$\int x^n \mathrm{d}x = \frac{1}{n+1} x^{n+1} + C$	$\int (p'(x) + q'(x))dx = p(x) + q(x) + C$
$\int \cos x \mathrm{d}x = \sin x + C$	$\int cp'(x)\mathrm{d}x = cp(x) + C$
$\int \sin x \mathrm{d}x = -\cos x + C$	$\int_{a}^{b} f'(x) dx = [f(x)]_{a}^{b} = f(b) - f(a)$
$\int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$	Integration by substitution
$\int e^x \mathrm{d}x = e^x + C$	$\int \frac{1}{x} dx = \ln x + C$

✓ More integration rules:

$\int \sec^2 x \mathrm{d}x = \tan x + C$	$\int \csc^2 x \mathrm{d}x = -\cot x + C$
$\int \sec x \tan x \mathrm{d}x = \sec x + C$	$\int \csc x \cot x dx = -\csc x + C$
$\int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$	$\int \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x + C$
$\int \frac{1}{1+x^2} \mathrm{d}x = \arctan x + C$	

✓ Integration by parts:

1.
$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u$$

2.
$$\int_{a}^{b} u \mathrm{d}v = \left[uv\right]_{a}^{b} - \int_{a}^{b} v \mathrm{d}u$$

21 Applications of Integration

- ✓ Areas on x y plane, between x = a and x = b:
 - 1. $\int_{a}^{b} f(x) dx$: Area under the graph of f(x) and above the x-axis
 - 2. $-\int_{a}^{b} f(x) dx$: Area under the *x*-axis and above the graph of f(x)
 - 3. $\int_{a}^{b} (f(x) g(x)) dx$: Area under the graph of f(x) and above the graph of g(x)

- ✓ Applications in kinematics:
 - 1. a(t): Acceleration with respect to the time t
 - 2. $v(t) = \int a(t) dt$: Velocity
 - 3. $s(t) = \int v(t) dt$: Displacement
 - 4. $d = \int_{t_1}^{t_2} |v(t)| dt$: Total distance travelled between t_1 and t_2
- ✓ Areas on x y plane, between y = c and y = d:
 - 1. $\int_{c}^{d} g(y) dy$: Area on the left of the graph of g(y) and on the right of the y-axis
 - 2. $-\int_{c}^{d} g(y) dy$: Area on the left of the *y*-axis and on the right of the graph of g(y)
 - 3. $\int_{c}^{d} (g(y) f(y)) dy$: Area on the left of the graph of g(y) and on the right of the graph of f(y)
- ✓ Volumes of revolutions about the *x*-axis, between x = a and x = b:
 - 1. $V = \pi \int_{a}^{b} (f(x))^{2} dx$: Volume of revolution when the region between the graph of f(x) and the *x*-axis is rotated 360° about the *x*-axis
 - 2. $V = \pi \int_{a}^{b} ((f(x))^{2} (g(x))^{2}) dx$: Volume of revolution when the region between the graphs of f(x) and g(x) is rotated 360° about the *x*-axis
- ✓ Volumes of revolutions about the *y*-axis, between y = c and y = d:
 - 1. $V = \pi \int_{c}^{d} (g(y))^{2} dy$: Volume of revolution when the region between the graph of g(y) and the *y*-axis is rotated 360° about the *y*-axis
 - 2. $V = \pi \int_{c}^{d} ((g(y))^{2} (f(y))^{2}) dy$: Volume of revolution when the region between the graphs of g(y) and f(y) is rotated 360° about the *y*-axis

Limits and Maclaurin Series 22

L'Hôpital's Rule under the conditions of indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$: \checkmark

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

✓
$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f^{(3)}(0) + \dots$$
: Maclaurin series

Common Maclaurin series: \checkmark

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

2! 3!
2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

3. $\cos x = 1 - \frac{x^2}{3!} + \frac{x^4}{3!} - \frac{x^6}{3!} + \cdots$

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$
 for $-1 < x \le 1$

5.
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$
 for $-1 < x < 1$

6.
$$(1+x)^n = 1 + nx + \frac{(n)(n-1)}{(2)(1)}x^2 + \frac{(n)(n-1)(n-2)}{(3)(2)(1)}x^3 + \dots$$
 for $-1 < x < 1$

Differential Equations 23

$$\checkmark \qquad \frac{dy}{dx} = f(x, y):$$
 First order differential equation

✓ Solving $\frac{dy}{dx} = f(x)g(y)$ by separating variables: $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y) \Longrightarrow \int \frac{1}{g(y)} \mathrm{d}y = \int f(x) \mathrm{d}x$

✓ Solving $\frac{dy}{dx} + f(x) \cdot y = g(x, y)$ by integrating factor: $e^{\int f(x)dx}$: Integrating factor $\frac{dy}{dx} + f(x) \cdot y = g(x, y) \Rightarrow e^{\int f(x)dx} \frac{dy}{dx} + e^{\int f(x)dx} \cdot f(x) \cdot y = e^{\int f(x)dx} \cdot g(x, y)$

✓ Solving
$$\frac{dy}{dx} = f(x, y)$$
 by Euler's method, with (x_0, y_0) and step length *h*:

$$\begin{cases}
x_{n+1} = x_n + h \\
y_{n+1} = y_n + h \frac{dy}{dx}\Big|_{(x_n, y_n)}
\end{cases}$$

✓ Developing a Maclaurin series from $\frac{dy}{dx} = f(x, y)$: $\frac{dy}{dx} = f(x, y) \Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}f(x, y) \Rightarrow \frac{d^3y}{dx^3} = \frac{d}{dx}\left(\frac{d}{dx}f(x, y)\right)$

24 Statistics

✓ Relationship between frequencies and cumulative frequencies:

Data	Frequency	Data less than	Cumulative
Data	riequency	or equal to	frequency
10	f_1	10	f_1
20	f_2	20	$f_1 + f_2$
30	f_3	30	$f_1 + f_2 + f_3$

✓ Measures of central tendency for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:

1.
$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
: Mean

- 2. The datum or the average value of two data at the middle: Median
- 3. The datum appears the most: Mode

- ✓ Measures of dispersion for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:
 - 1. $x_n x_1$: Range
 - 2. Two subgroups A and B can be formed from the data set such that all data of the subgroup A are less than or equal to the median, while all data of the subgroup B are greater than or equal to the median
 - 3. Q_1 = The median of the subgroup A: Lower quartile
 - 4. $Q_3 =$ The median of the subgroup B: Upper quartile
 - 5. $Q_3 Q_1$: Inter-quartile range (IQR)

6.
$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$$
: Standard deviation

- ✓ Box-and-whisker diagram: Minimum value
 ✓ Maximum value
 ✓ ______ Maximum value
 ✓ ______ Median Q₃
- ✓ A datum x is defined to be an outlier if $x < Q_1 1.5$ IQR or $x > Q_3 + 1.5$ IQR
- ✓ Coding of data:
 - 1. Only the mean, the median, the mode and the quartiles will change when each datum of the data set is added or subtracted by a value
 - 2. All measures of central tendency and measures of dispersion will change when each datum of the data set is multiplied or divided by a value

25 Permutations and Combinations

- ✓ Permutations and combinations when a sample of r objects are selected from a set of n objects, $0 \le r \le n$:
 - 1. ${}^{n}P_{r} = \frac{n!}{(n-r)!}$: Number of permutations when the order is taken into

account

2. ${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$: Number of combinations when the order is not taken into account

✓ Terminologies:

- 1. U: Universal set
- 2. A: Event
- 3. *x*: Outcome of an event
- 4. n(U): Total number of elements
- 5. n(A): Number of elements in A
- ✓ Formulae for probability:
 - 1. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - 2. P(A') = 1 P(A)
 - 3. $P(A | B) = \frac{P(A \cap B)}{P(B)}$
 - 4. $P(A) = P(A \cap B) + P(A \cap B')$
 - 5. $P(A' \cap B') + P(A \cup B) = 1$
 - 6. $P(A \cup B) = P(A) + P(B)$ and $P(A \cap B) = 0$ if A and B are mutually exclusive
 - 7. $P(A \cap B) = P(A) \cdot P(B)$ and P(A | B) = P(A) if A and B are independent

✓ Venn diagram:

- 1. Region I: $A \cap B$
- 2. Region II: $A \cap B'$
- 3. Region III: $A' \cap B$
- 4. Region IV: $(A \cup B)'$

✓ Bayes' theorem:

1.

1.
$$P(A | B) = \frac{P(A)P(B | A)}{P(A)P(B | A) + P(A')P(B | A')}$$
 for two events

 $\frac{P(A_i)P(B \mid A_i)}{P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + P(A_3)P(B \mid A_3)} (i = 1, 2, 3) \text{ for}$ 2. $\mathbf{P}(A_i \mid B) =$ three events

Discrete Probability Distributions

Properties of a discrete random variable X :					
	X	x_1	x_2	•••	X_n
	$\mathbf{P}(X=x)$	$\mathbf{P}(X=x_1)$	$\mathbf{P}(X=x_2)$		$\mathbf{P}(X=x_n)$
1.	$P(X = x_1) + P(X = x_2) + \dots + P(X = x_n) = 1$				

- $E(X) = x_1 P(X = x_1) + x_2 P(X = x_2) + \dots + x_n P(X = x_n)$: Expected value of X 2.
- E(X) = 0 if a fair game is considered 3.

✓ Properties of a discrete random variable X :

X	x_1	<i>x</i> ₂		X _n
$\mathbf{P}(X=x)$	$\mathbf{P}(X=x_1)$	$\mathbf{P}(X=x_2)$		$\mathbf{P}(X=x_n)$
$E(X^{2}) = x_{1}^{2}P(X = x_{1}) + x_{2}^{2}P(X = x_{2}) + \dots + x_{n}^{2}P(X = x_{n})$				

- $\operatorname{Var}(X) = \operatorname{E}(X^2) (\operatorname{E}(X))^2$: Variance of X 2.
- ✓ Linear transformation of a random variable X :
 - 1. E(aX+b) = aE(X)+b: Expected value of X
 - 2. $Var(aX+b) = a^2 Var(X)$

- Properties of a random variable $X \sim B(n, p)$ following binomial distribution:
 - 1. Only two outcomes from every independent trial (Success and failure)
 - 2. *n*: Number of trials
 - 3. *p* : Probability of success
 - 4. X : Number of successes in n trials
- ✓ Formulae for binomial distribution:

1.
$$P(X = r) = {n \choose r} p^r (1-p)^{n-r} \text{ for } 0 \le r \le n, r \in \mathbb{Z}$$

- 2. E(X) = np: Expected value of X
- 3. Var(X) = np(1-p): Variance of X
- 4. $\sqrt{np(1-p)}$: Standard deviation of X
- 5. $P(X \le r) = P(X < r+1) = 1 P(X \ge r+1)$

29 Continuous Probability Distributions

 \checkmark Properties of a continuous random variable X :

 $p(x) = \begin{cases} f(x) & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$

$$1. \qquad \int_a^b f(x) \mathrm{d}x = 1$$

2. $E(X) = \int_{a}^{b} x \cdot f(x) dx$: Expected value of X

- 3. Q_2 : Median of X, which is the solution of the equation $\int_{a}^{Q_2} f(x) dx = 0.5$
- 4. Q_1 : Lower quartile of X, which is the solution of $\int_a^{Q_1} f(x) dx = 0.25$
- 5. Q_3 : Upper quartile of X, which is the solution of $\int_a^{Q_3} f(x) dx = 0.75$
- 6. The maximum value of f(x) is the mode of X
- 7. $E(X^2) = \int_a^b x^2 \cdot f(x) dx$

Normal Distribution

- ✓ Properties of a random variable $X \sim N(\mu, \sigma^2)$ following normal distribution:
 - 1. μ : Mean
 - 2. σ : Standard deviation
 - 3. The mean, the median and the mode are the same
 - 4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
 - 5. $P(X < \mu) = P(X > \mu) = 0.5$
 - 6. The total area under the curve is 1
- ✓ Standardization of a normal variable:
 - 1. $Z \sim N(0, 1^2)$: Standard normal distribution with mean 0 and standard deviation 1

2.
$$Z = \frac{X - \mu}{\sigma}$$
 for $X \sim N(\mu, \sigma^2)$

Bivariate Analysis

✓ Correlations:

	Strong	0.75 < <i>r</i> < 1
Positive	Moderate	0.5 < <i>r</i> < 0.75
	Weak	0 < <i>r</i> < 0.5
No		<i>r</i> = 0
	Weak	-0.5 < r < 0
Negative	Moderate	-0.75 < r < -0.5
	Strong	-1 < r < -0.75

where r is the correlation coefficient

- ✓ Linear regression:
 - 1. y = ax + b: Regression line of y on x
 - 2. x = ay + b: Regression line of x on y

32 Paper 3 Analysis

- ✓ Nature of paper: Structured question
- ✓ Time allowed: 60 minutes
- ✓ Maximum mark: 55 marks
- ✓ Number of questions: 2
- ✓ Mark range per question: 25 marks to 30 marks
- ✓ Weighting: 20% of the total mark
- ✓ Ways of assessing:
 - 1. Find
 - (a) the value of a quantity
 - (b) the formula of a quantity
 - (c) an inequality connecting quantities
 - (d) the limit of a quantity
 - 2. Show
 - (a) a quantity equals to a value
 - (b) the formula of a quantity
 - (c) the limit of a quantity
 - (d) the recurrence relation of a quantity
 - 3. Solve an equation
 - 4. Geometrically interpret a result
 - 5. Sketch a graph
 - 6. Plot and label a quantity on a diagram
 - 7. Suggest an expression for a quantity
 - 8. Express the formula of a quantity
 - 9. Verify
 - (a) the value of a quantity
 - (b) the trueness of a statement
 - 10. Prove the trueness of a statement
 - 11. Explain the trueness of a statement

Notes

