Formula List of Applications and Interpretation Standard Level for IBDP Mathematics

Intensive Notes by Topics here	IBDP Maths Info. & Exam Tricks here
Exam & GDC Skills Video List here	More Mock Papers & Marking Service here

Standard Form

✓ Standard Form:

A number in the form $(\pm)a \times 10^k$, where $1 \le a < 10$ and k is an integer

2

Approximation and Error

✓ Summary of rounding methods:

2.71828	Correct to 3	Correct to 3	
2./1020	significant figures	decimal places	
Round off	2.7 2	2.71 8	

 \checkmark Consider a quantity measured as Q and correct to the nearest unit d:

 $\frac{1}{2}d$: Maximum absolute error

$$Q - \frac{1}{2}d \le A < Q + \frac{1}{2}d$$
: Range of the actual value A

 $Q - \frac{1}{2}d$: Lower bound (Least possible value) of A

 $Q + \frac{1}{2}d$: Upper bound of A

 $\frac{\text{Maximum absolute error}}{Q} \times 100\% \colon \text{Percentage error}$

3

Functions

- ✓ The function y = f(x):
 - 1. f(a): Functional value when x = a
 - 2. Domain: Set of values of *x*
 - 3. Range: Set of values of y

- ✓ Properties of rational function $y = \frac{ax+b}{cx+d}$:
 - 1. $y = \frac{1}{x}$: Reciprocal function
 - 2. $y = \frac{a}{c}$: Horizontal asymptote
 - 3. $x = -\frac{d}{c}$: Vertical asymptote
- ✓ Variations:
 - 1. $y = kx, k \neq 0$: y is directly proportional to x
 - 2. $y = \frac{k}{x}, k \neq 0$: y is inversely proportional to x

Quadratic Functions

✓ General form $y = ax^2 + bx + c$, where $a \neq 0$:

a > 0	The graph opens upward	
a < 0	The graph opens downward	
С	y -intercept	
$h = -\frac{b}{2a}$	x -coordinate of the vertex	
$k = ah^2 + bh + c$	y -coordinate of the vertex	
$\kappa = an + bn + c$	Extreme value of y	
x = h	Equation of the axis of symmetry	

- ✓ Other forms:
 - 1. $y = a(x-h)^2 + k$: Vertex form
 - 2. y = a(x-p)(x-q): Factored form with x-intercepts p and q
- $\checkmark \qquad h = -\frac{b}{2a} = \frac{p+q}{2}$
- The x-intercepts of the quadratic function $y = ax^2 + bx + c$ are the roots of the corresponding quadratic equation $ax^2 + bx + c = 0$

Exponential and Logarithmic Functions

- \checkmark $y = a^x$: Exponential function, where a ≠ 1
- \checkmark $y = \log_a x$: Logarithmic function, where a > 0
- ✓ $y = \log x = \log_{10} x$: Common Logarithmic function
- \checkmark $y = \ln x = \log_e x$: Natural Logarithmic function, where e = 2.71828... is an exponential number
- ✓ Properties of the graphs of $y = a^x$:

a>1	0 < a < 1	
y -intercept=1		
y increases as x increases	y decreases as x increases	
y tends to zero as x tends to	y tends to zero as x tends to	
negative infinity	positive infinity	
Horizontal asymptote: $y = 0$		

6

Systems of Equations

- $\checkmark \qquad \begin{cases} ax + by = c \\ dx + ey = f \end{cases} : 2 \times 2 \text{ system}$
- $\begin{cases} ax + by + cz = d \\ ex + fy + gz = h : 3 \times 3 \text{ system} \\ ix + jy + kz = l \end{cases}$
- ✓ The above systems can be solved by PlySmlt2 in TI-84 Plus CE

7 Arithmetic Sequences

- ✓ Properties of an arithmetic sequence u_n :
 - 1. u_1 : First term
 - 2. $d = u_2 u_1 = u_n u_{n-1}$: Common difference
 - 3. $u_n = u_1 + (n-1)d$: General term (n th term)
 - 4. $S_n = \frac{n}{2} \left[2u_1 + (n-1)d \right] = \frac{n}{2} \left[u_1 + u_n \right]$: The sum of the first n terms
- $\checkmark \qquad \sum_{r=1}^{n} u_r = u_1 + u_2 + u_3 + \dots + u_{n-1} + u_n$: Summation sign

8

Geometric Sequences

- ✓ Properties of a geometric sequence u_n :
 - 1. u_1 : First term
 - 2. $r = u_2 \div u_1 = u_n \div u_{n-1}$: Common ratio
 - 3. $u_n = u_1 \times r^{n-1}$: General term (*n* th term)
 - 4. $S_n = \frac{u_1(1-r^n)}{1-r}$: The sum of the first n terms

9

Financial Mathematics

- ✓ Compound Interest:
 - PV: Present value
 - r%: Interest rate per annum (per year)
 - n: Number of years
 - k: Number of compounded periods in one year

$$FV = PV \left(1 + \frac{r}{100k}\right)^{kn}$$
: Future value

$$I = FV - PV$$
: Interest

✓ Inflation:

i%: Inflation rate

R% : Interest rate compounded yearly

(R-i)%: Real rate

- ✓ Annuity:
 - 1. Payments at the beginning of each year

2. Payments at the end of each year

- ✓ Amortization:
 - 1. Payments at the beginning of each year

$$-Pmt$$
 $-Pmt$ $-Pmt$ \cdots $-Pmt$ PV

2. Payments at the end of each year

10

Coordinate Geometry

- ✓ Consider the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a x y plane:
 - 1. $m = \frac{y_2 y_1}{x_2 x_1}$: Slope of *PQ*
 - 2. $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$: Distance between *P* and *Q*
 - 3. $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$: Mid-point of PQ

- ✓ Consider the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ on a x y z plane:
 - 1. z -axis: The axis perpendicular to the x y plane
 - 2. $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$: Distance between P and Q
 - 3. $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$: Mid-point of PQ
- \checkmark Forms of straight lines with slope m and y -intercept c:
 - 1. y = mx + c: Slope-intercept form
 - 2. Ax + By + C = 0: General form
- \checkmark Ways to find the x-intercept and the y-intercept of a line:
 - 1. Substitute y = 0 and make x the subject to find the x-intercept
 - 2. Substitute x = 0 and make y the subject to find the y-intercept

Voronoi Diagrams

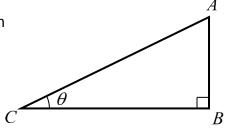
✓ Elements in Voronoi Diagrams:

Site: A given point

Cell of a site: A collection of points which is closer to the site than other sites

Boundary: A line dividing the cells

Vertex: An intersection of boundaries

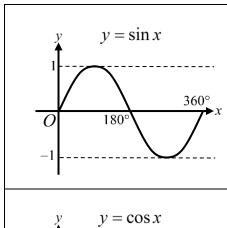

- ✓ Related problems:
 - 1. Nearest neighbor interpolation
 - 2. Incremental algorithm
 - 3. Toxic waste dump problem

Trigonometry

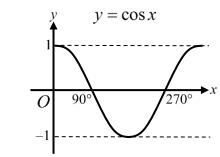
Consider a right-angled triangle ABC:

$$AB^2 + BC^2 = AC^2$$
: Pythagoras' Theorem

$$\begin{cases} \sin \theta = \frac{AB}{AC} \\ \cos \theta = \frac{BC}{AC} : \text{Trigonometric ratios} \\ \tan \theta = \frac{AB}{BC} \end{cases}$$


Properties of a general trigonometric function $y = A \sin B(x - C) + D$:

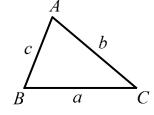
1.
$$A = \frac{y_{\text{max}} - y_{\text{min}}}{2}$$
: Amplitude


$$2. B = \frac{360^{\circ}}{\text{Period}}$$

$$D = \frac{y_{\text{max}} + y_{\text{min}}}{2}$$

- C can be found by substitution of a point on the graph 4.
- Properties of graphs of trigonometric functions:

1.	Amplitude=1
2.	Period = 360°
3.	$-1 \le \sin x \le 1$


- Amplitude=1 1. 2. Period = 360°
- 3. $-1 \le \cos x \le 1$

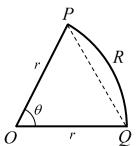
2-D Trigonometry

✓ Consider a triangle *ABC*:

1.
$$\frac{\sin A}{a} = \frac{\sin B}{b}$$
 or $\frac{a}{\sin A} = \frac{b}{\sin B}$: Sine rule

2.
$$a^2 = b^2 + c^2 - 2bc \cos A$$

or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$: Cosine rule



- 3. $\frac{1}{2}ab\sin C$: Area of the triangle *ABC*
- ✓ Consider a sector *OPRQ* with centre *O*, radius *r* and $\angle POQ = \theta^{\circ}$:

$$2\pi r \times \frac{\theta^{\circ}}{360^{\circ}}$$
: Arc length *PRQ*

$$\pi r^2 \times \frac{\theta^{\circ}}{360^{\circ}}$$
: Area of the sector *OPRQ*

$$\pi r^2 \times \frac{\theta^{\circ}}{360^{\circ}} - \frac{1}{2} r^2 \sin \theta^{\circ}$$
: Area of the segment *PRQ*

14

Areas and Volumes

- \checkmark For a cube of side length l:
 - 1. $6l^2$: Total surface area
 - 2. l^3 : Volume
- \checkmark For a cuboid of side lengths a, b and c:
 - 1. 2(ab+bc+ac): Total surface area
 - 2. *abc*: Volume
- \checkmark For a prism of height h and cross-sectional area A:
 - 1. Ah: Volume

- ✓ For a cylinder of height h and radius r:
 - 1. $2\pi r^2 + 2\pi rh$: Total surface area
 - 2. $2\pi rh$: Lateral surface area
 - 3. $\pi r^2 h$: Volume
- \checkmark For a pyramid of height h and base area A:
 - 1. $\frac{1}{3}Ah$: Volume
- ✓ For a circular cone of height h and radius r:
 - 1. $l = \sqrt{r^2 + h^2}$: Slant height
 - 2. $\pi r^2 + \pi r l$: Total surface area
 - 3. πrl : Curved surface area
 - 4. $\frac{1}{3}\pi r^2 h$: Volume
- \checkmark For a sphere of radius r:
 - 1. $4\pi r^2$: Total surface area
 - 2. $\frac{4}{3}\pi r^3$: Volume
- \checkmark For a hemisphere of radius r:
 - 1. $3\pi r^2$: Total surface area
 - 2. $2\pi r^2$: Curved surface area
 - 3. $\frac{2}{3}\pi r^3$: Volume

15

Differentiation

- \checkmark $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$: Derivative of the function y = f(x) (First derivative)
- ✓ Rules of differentiation:
 - 1. $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$
 - 2. $f(x) = p(x) + q(x) \Rightarrow f'(x) = p'(x) + q'(x)$
 - 3. $f(x) = cp(x) \Rightarrow f'(x) = cp'(x)$

- ✓ Relationship between graph properties and the derivatives:
 - 1. f'(x) > 0 for $a \le x \le b$: f(x) is increasing in the interval
 - 2. f'(x) < 0 for $a \le x \le b$: f(x) is decreasing in the interval
 - 3. f'(a) = 0: (a, f(a)) is a stationary point of f(x)
 - 4. f'(a) = 0 and f'(x) changes from positive to negative at x = a: (a, f(a)) is a maximum point of f(x)
 - 5. f'(a) = 0 and f'(x) changes from negative to positive at x = a: (a, f(a)) is a minimum point of f(x)
- ✓ Tangents and normals:
 - 1. f'(a): Slope of tangent at x = a
 - 2. $\frac{-1}{f'(a)}$: Slope of normal at x = a
 - 3. y-f(a)=f'(a)(x-a): Equation of tangent at x=a
 - 4. $y-f(a) = \left(\frac{-1}{f'(a)}\right)(x-a)$: Equation of normal at x = a

Integration and Trapezoidal Rule

- ✓ Integrals of a function y = f(x):
 - 1. $\int f(x)dx$: Indefinite integral of f(x)
 - 2. $\int_a^b f(x) dx$: Definite integral of f(x) from a to b
- ✓ Rules of integration:
 - 1. $\int x^n dx = \frac{1}{n+1} x^{n+1} + C$
 - 2. $\int (p'(x) + q'(x)) dx = p(x) + q(x) + C$
 - 3. $\int cp'(x)dx = cp(x) + C$
- $\int_a^b f(x) dx$: Area under the graph of f(x) and above the x-axis, between x = a and x = b, where $f(x) \ge 0$

✓ Trapezoidal Rule:

$$a$$
, b ($a < b$): End points

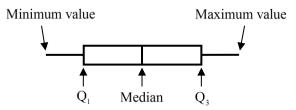
n: Number of intervals

$$h = \frac{b-a}{n}$$
: Interval width

$$\int_{a}^{b} f(x) dx \text{ can be estimated by } \frac{1}{2} h \big[f(x_0) + f(x_n) + 2(f(x_1) + f(x_2) + \ldots + f(x_{n-1})) \big]$$

- ✓ Estimation by Trapezoidal Rule:
 - 1. The estimation overestimates if the estimated value is greater than the actual value of $\int_a^b f(x) \mathrm{d}x$
 - 2. The estimation underestimates if the estimated value is less than the actual value of $\int_a^b f(x) dx$

✓ Relationship between frequencies and cumulative frequencies:

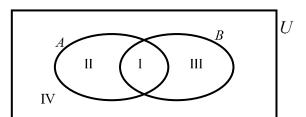

Data	Frequency	Data less than or equal to	Cumulative frequency
10	f_1	10	f_1
20	f_2	20	$f_1 + f_2$
30	f_3	30	$f_1 + f_2 + f_3$

✓ Measures of central tendency for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:

1.
$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
: Mean

- 2. The datum or the average value of two data at the middle: Median
- 3. The datum appears the most: Mode

- ✓ Measures of dispersion for a data set $\{x_1, x_2, x_3, \dots, x_n\}$ arranged in ascending order:
 - 1. $x_n x_1$: Range
 - 2. Two subgroups A and B can be formed from the data set such that all data of the subgroup A are less than or equal to the median, while all data of the subgroup B are greater than or equal to the median
 - 3. $Q_1 = \text{The median of the subgroup A: Lower quartile}$
 - 4. Q_3 = The median of the subgroup B: Upper quartile
 - 5. $Q_3 Q_1$: Inter-quartile range (IQR)
 - 6. $\sigma = \sqrt{\frac{(x_1 \overline{x})^2 + (x_2 \overline{x})^2 + (x_3 \overline{x})^2 + \dots + (x_n \overline{x})^2}{n}}$: Standard deviation
- ✓ Box-and-whisker diagram:

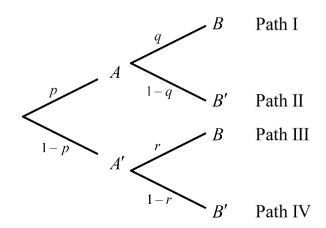


- ✓ A datum x is defined to be an outlier if $x < Q_1 1.5$ IQR or $x > Q_3 + 1.5$ IQR
- ✓ Coding of data:
 - 1. Only the mean, the median, the mode and the quartiles will change when each datum of the data set is added or subtracted by a value
 - 2. All measures of central tendency and measures of dispersion will change when each datum of the data set is multiplied or divided by a value

Probability

- ✓ Terminologies:
 - 1. U: Universal set
 - 2. *A*: Event
 - 3. x: Outcome of an event
 - 4. n(U): Total number of elements
 - 5. n(A): Number of elements in A

- ✓ Formulae for probability:
 - 1. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - 2. P(A') = 1 P(A)
 - 3. $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
 - 4. $P(A) = P(A \cap B) + P(A \cap B')$
 - 5. $P(A' \cap B') + P(A \cup B) = 1$
 - 6. $P(A \cup B) = P(A) + P(B)$ and $P(A \cap B) = 0$ if A and B are mutually exclusive
 - 7. $P(A \cap B) = P(A) \cdot P(B)$ and $P(A \mid B) = P(A)$ if A and B are independent
- ✓ Venn diagram:
 - 1. Region I: $A \cap B$
 - 2. Region II: $A \cap B'$
 - 3. Region III: $A' \cap B$
 - 4. Region IV: $(A \cup B)'$



- ✓ Tree diagram:
 - 1. Path I: $P(A \cap B) = pq$
 - 2. Path I + Path III:

$$= P(B)$$

$$= P(A \cap B) + P(A' \cap B)$$

$$= pq + (1-p)r$$

19

Discrete Probability Distributions

 \checkmark Properties of a discrete random variable X:

X	x_1	x_2	 \mathcal{X}_n
P(X=x)	$P(X=x_1)$	$P(X = x_2)$	 $P(X=x_n)$

- 1. $P(X = x_1) + P(X = x_2) + \dots + P(X = x_n) = 1$
- 2. $E(X) = x_1 P(X = x_1) + x_2 P(X = x_2) + \dots + x_n P(X = x_n)$: Expected value of X
- 3. E(X) = 0 if a fair game is considered

Binomial Distribution

- ✓ Properties of a random variable $X \sim B(n, p)$ following binomial distribution:
 - 1. Only two outcomes from every independent trial (Success and failure)
 - 2. n: Number of trials
 - 3. p: Probability of success
 - 4. X: Number of successes in n trials
- ✓ Formulae for binomial distribution:

1.
$$P(X=r) = \binom{n}{r} p^r (1-p)^{n-r} \text{ for } 0 \le r \le n, \ r \in \mathbb{Z}$$

- 2. E(X) = np: Expected value of X
- 3. Var(X) = np(1-p): Variance of X
- 4. $\sqrt{np(1-p)}$: Standard deviation of X
- 5. $P(X \le r) = P(X < r+1) = 1 P(X \ge r+1)$

21

Normal Distribution

- ✓ Properties of a random variable $X \sim N(\mu, \sigma^2)$ following normal distribution:
 - 1. μ : Mean
 - 2. σ : Standard deviation
 - 3. The mean, the median and the mode are the same
 - 4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
 - 5. $P(X < \mu) = P(X > \mu) = 0.5$
 - 6. The total area under the curve is 1

✓ Correlations:

	Strong	0.75 < r < 1	
Positive	Moderate	0.5 < r < 0.75	
	Weak	0 < r < 0.5	
N	r = 0		
	Weak	-0.5 < r < 0	
Negative	Moderate	-0.75 < r < -0.5	
	Strong	-1 < r < -0.75	

where r is the correlation coefficient

✓ Linear regression:

y = ax + b: Regression line of y on x

✓ Correlation Coefficient for ranked data:

 r_s : Spearman's Rank Correlation Coefficient

23 Statistical Tests

✓ Hypothesis test:

 H_0 : Null hypothesis

 H_1 : Alternative hypothesis

C: Critical value in the hypothesis test

 α : Significance level

 \checkmark χ^2 test for independence for a contingency table with r rows and c columns:

n = rc: Total number of data

 O_i (i = 1, 2, ..., n): Observed frequencies

 E_i (i = 1, 2, ..., n): Expected frequencies

v = (r-1)(c-1): Degree of freedom

$$\chi^2_{calc} = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$
: χ^2 test statistic

 H_0 : Two variables are independent

 H_1 : Two variables are not independent

 H_0 is rejected if $\chi^2_{calc} > C$ or the p-value is less than the significance level H_0 is not rejected if $\chi^2_{calc} < C$ or the p-value is greater than the significance

level

 \checkmark χ^2 goodness of fit test for a contingency table with 1 row and c columns:

v = c - 1: Degree of freedom

 H_0 : The data follows an assigned distribution

 H_1 : The data does not follow an assigned distribution

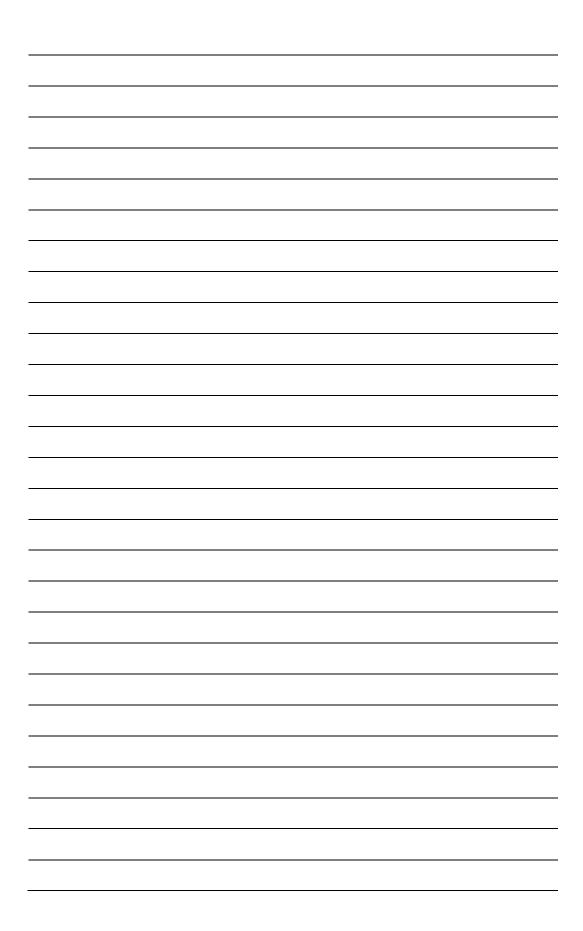
 H_0 is rejected if $\chi^2_{calc} > C$ or the p-value is less than the significance level

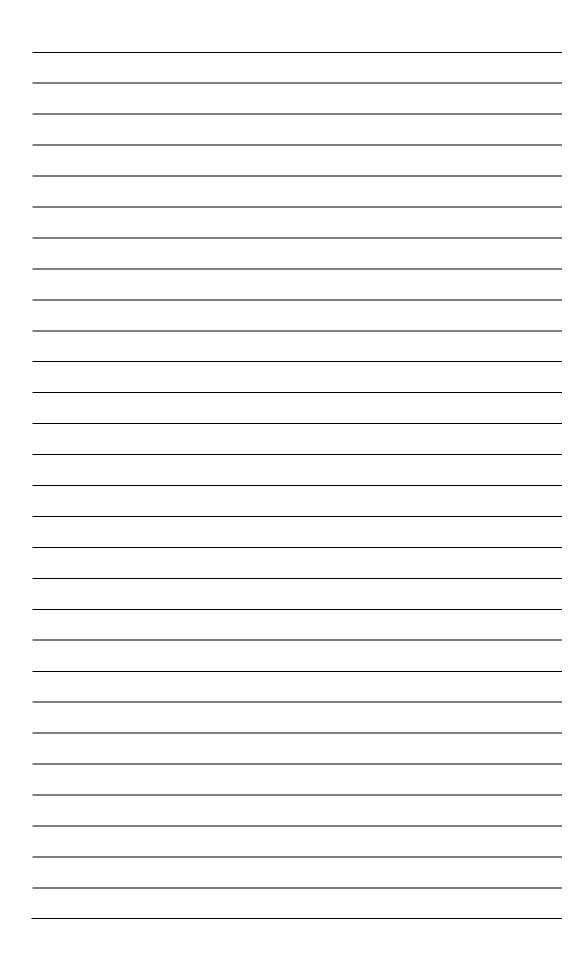
 H_0 is not rejected if $\chi^2_{calc} < C$ or the p -value is greater than the significance . . .

level

 \checkmark Two sample t test:

 $\mu_{\rm l}$, $\mu_{\rm 2}$: The population means of two groups of data


 $H_0: \mu_1 = \mu_2$


 H_1 : $\mu_1 > \mu_2$, $\mu_1 < \mu_2$ (for 1-tailed test), $\mu_1 \neq \mu_2$ (for 2-tailed test)

 H_0 is rejected if the p-value is less than the significance level

 H_0 is not rejected if the p-value is greater than the significance level

Notes

