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This paper consists of TWO sections: 

A and B. 

 

Attempt ALL questions. Write your 

answers in the spaces provided in 

this Question - Answer Book. 

 

No calculator is allowed. 

 

You are suggested to prepare a 

formula booklet of Analysis and 

Approaches for IBDP Mathematics 

when attempting the questions. 

 

Supplementary answer sheets and 

graph papers will be supplied on 

request. 

 

Unless otherwise specified, ALL 

working must be clearly shown. 

 

Unless otherwise specified, 

numerical answers should be either 

EXACT or correct to 3 SIGNIFICANT 
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necessarily drawn to scale. 

 

Information to be read before you 

start the exam: 

 

 

 
 

Marker’s 

Use Only 

Examiner’s 

Use Only 
 

Question 

Number 
Marks Marks 

Maximum 

Mark 

Section A 

1   6 

2   5 

3   6 

4   8 

5   7 

6   7 

7   5 

8   7 

9   5 

Section A 

Total 
  56 

Section B 

10   14 

11   20 

12   20 

Section B 

Total 
  54 

Overall 

Paper 1 

Total 
  110 

    

    

    

    

 

 

 

 



 

 

©  SE Production Limited  2 

All Rights Reserved 2021 

Section A (56 marks) 
 

1. There are 15  items in a data set. The sum of the items is 300 . 

 

(a) Find the mean. 

[2] 

  The variance of this data set is 9 . Each value in the set is multiplied by 2 . 

 

(b) (i) Write down the value of the new mean. 

 

 (ii) Find the value of the new variance. 

 

 (iii) Hence, write down the value of the new standard deviation. 

[4] 
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2. A straight line 1L  passes through the points (8, 0)  and (24, 32) . 

 

 (a) Find the equation of 1L , giving the answer in general form. 

[3] 

(b) The equation of another straight line, 2L , is given as 2021 0x ay   , 

a . If 1L  and 2L  are perpendicular, find a . 

[2] 
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3. (a) Show that 2 2 2 2(2 1) (2 3) (2 5) 3(4 12 11) 2n n n n n         , where  

n . 

[3] 

(b) Hence, or otherwise, prove that the sum of the squares of any three 

consecutive odd numbers is greater than a multiple of 3  by 2 . 

[3] 
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4. Let 
3 2( ) 2 1f x px qx x    . At 1x  , the slope of the normal of the curve of f  

is 
1

15
 . It is given that 

1(41) 2f   , find the value of p  and of q . 

[8] 

 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   



 

 

©  SE Production Limited  6 

All Rights Reserved 2021 

5. The graph of f  is given by ( ) sin ( 2.5)f t a b t d   , 0a  , 0t  . 

 

When 2t  , there is a maximum value of 37 , at P . When 11t  , there is a 

minimum value of 5 . The graph of f  is strictly decreasing at 2 11t  . 

 

 (a) Show that ( ) 21sin ( 2.5) 16
9

f t t


   . 

[5] 

The graph of f  is then transformed to the graph of g  by a horizontal stretch 

of scale factor 3, followed by a translation of 
17

8

 
 
 

. Let P  be the image of P . 

 

 (b) Find the coordinates of P . 

[2] 
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6. Consider the function 4 2( ) 4 3 1f x x x   , x . The graph of f  is translated  

one unit to the right and then stretched vertically with scale factor 3 to form the 

function ( )g x .  

 

(a) Express ( )g x  in the form 4 3 2ax bx cx dx e    , where a , b , c , d , 

e . 

[5] 

(b) Hence, find the sum of the roots of the equation ( ) 0g x  . 

[2] 
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7. Let 
3 22 5 37

( )
37

x x
f x

x

 



, where 1x  . Solve the inequality 1 ( )f x x  . 

[5] 
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8. Prove by mathematical induction that 
2 3 ( 1)( 1)

2 2 2 6

n n n n       
        

     
, 

n  , 2n  . 
[7] 
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9. The random variable X  has the probability density function 

 

3

2

1
( )

1

xf x e
e




, 1 3x  . 

 

(a) Write down the mode. 

[1] 

(b) Show that the exact value of the median is 
2 1

3 ln
2

e 
  

 
. 

[4] 
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Section B (54 marks) 
 

10. Let 4( ) cosf x x , x . 

 

 (a) (i) Write down the range of the function f . 

 

(ii) Consider ( ) 1f x  , 0 2πx  . Find the number of solutions to 

this equation. 

[5] 

(b) Find ( )f x , giving your answer in the form sin cosp qa x x  where a , p , 

q . 

[2] 

(c) Let ( ) 2sing x x  for 0 πx  . Find the total area of the regions 

bounded by the graph of ( ) ( )y f x g x  and the x -axis. 

[7] 
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11. A function is defined as ( ) sinh x x , x . 

 

(a) Solve the differential equation 
d

( ) ( 1)
d

y
h x y

x
   , 1y   , where 0y   

when 0x  , giving the answer in the form ( )y f x . 

[8] 

(b) By using the integrating factor approach, show that the solution of the 

differential equation 2d
( ) 1 ( ( )) ( 1)

d

y
h x h x y

x
    , where 0y   when 

0x  , is 
21

sin
2 1

x

y e  . 

[12] 
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12. (a) Solve the equation 6 1 0z + = , z∈ , giving the answers in  
modulus-argument form. 

[4] 
 (b) Hence, solve the equation 4 2 1 0z z− + = . 

[4] 

 Let cos i sin
6 6
π πλ = + , 3p λ λ= +  and 11 9q λ λ= + . It is given that 1 3λ

λ
+ = . 

 
 (c) (i) Form a quadratic equation of z , z∈ , with roots p  and q . 
 
  (ii) Hence, form a quadratic equation of z , z∈ , with roots 2 p   

and 2q . 
[12] 
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END OF PAPER 


