Applications and Interpretation Higher Level for IBDP Mathematics

Updates on the Book

1. Algebra Notes, Example 1.5

The total revenue is \$175.

(a) (i)
$$\begin{cases} x + y + z = 28 \\ 6x + 5y + 9z = 175 \\ 2x - y = 0 \end{cases}$$

2. Statistics and Probability Notes, Section 3

Markov Chain with transition matrix T:

- 3. v: Steady state vector, which is the eigenvector of T corresponding to the eigenvalue $\frac{\lambda}{1} = 1$
- 4. \mathbf{p} : Steady state probability vector, which is the eigenvector of \mathbf{T} corresponding to the eigenvalue $\lambda = 1$, with the sum of all entries equals to one
- 5. \mathbf{v}_0 : Initial state vector
- 6. **p**₀: Initial state probability vector, with the sum of all entries equals to one
- 7. $\mathbf{v}_n = \mathbf{T}^n \mathbf{v}_0$: State vector after *n* transitions
- 8. $\mathbf{p}_n = \mathbf{T}^n \mathbf{p}_0$: State probability vector after n transitions, with the sum of all entries equals to one
- 9. The column sum for all columns in T must be equal to one

3. Statistics and Probability Notes, Example 4.7

(d) (ii) Hence, write down the steady state vector for this Markov chain.

4. Statistics and Probability Notes, Exercise 4.7

(d) (ii) Hence, write down the steady state vector for this Markov chain.