Your Intensive Notes Applications and Interpretation Standard Level for IBDP Mathematics

Functions

Topics Covered

1 Functions Page 3
2 Quadratic Functions Page 10
3 Exponential and Logarithmic Functions Page 14
4 Equations of Straight Lines Page 18

Important Notes

Notations related to a general function $y=f(x)$:

1. $\quad f(a)$: Functional value (value of y) when $x=a$
2. Domain: Set of all possible values of x
3. Range: Set of all possible values of y

4. Root(s) of the equation $f(x)=0: x$-intercept(s) of the graph of the corresponding function $y=f(x)$, which is equivalent to the zero(s) of $y=f(x)$
5. $y=a x^{3}+b x^{2}+c x+d$: Cubic function, where $a \neq 0$

Properties of $y=f^{-1}(x)$:

1. Domain of f^{-1} is consistent with range of f
2. Range of f^{-1} is consistent with domain of f
3. Graph of $y=f^{-1}(x)$: Reflection of the graph of $y=f(x)$ about $y=x$
4. The points of intersection of the graphs of f^{-1} and f lies on $y=x$
5. $y=f^{-1}(x)$ exists only when $y=f(x)$ is one-to-one in the restricted domain

Types of asymptotes of the graph of $y=f(x)$:

1. Vertical asymptote: The vertical boundary where $f(x)$ is undefined
2. The equation of the vertical asymptote can be found by considering the denominator expression of $f(x)$ equals to zero
3. Horizontal asymptote: The horizontal boundary (level) where y approaches when x tends to positive/negative infinity
4. The equation of the horizontal asymptote can be found by considering

$$
y=\lim _{x \rightarrow \infty} f(x)
$$

Types of variations:

1. $y=k x: y$ is directly proportional to x, where $k \neq 0, k \in \mathbb{R}$
2. $y=\frac{k}{x}: y$ is inversely proportional to x, where $k, x \neq 0, k \in \mathbb{R}$

Notes on GDC		
TEXAS TI-84 Plus CE $y=$ to input the function \rightarrow 2nd window to set the starting row to be at least 1000 \rightarrow 2nd graph to look at the function values when x is at least 1000 to find the equation of the horizontal asymptote of the graph	TEXAS TI-Nspire CX Graph to input the function to generate a table \rightarrow ctrl \dagger to generate a table \rightarrow menu 25 to set the starting row to look at the function values when x is at least 1000 to find the equation of the horizontal asymptote of the graph	CASIO fx-CG50 Table to input the function to generate a table \rightarrow F5 to set the starting row to be at least 1000 \rightarrow F6 to look at the function values when x is at least 1000 to find the equation of the horizontal asymptote of the graph

Example 2.1

The number of cells in a culture, $N(t), t$ hours after it has been established is given by $N(t)=10 t^{2}$ for $0 \leq t \leq 5$.
(a) Write down
(i) the initial number of cells;

$$
\begin{equation*}
N(0)=0 \tag{A1}
\end{equation*}
$$

(ii) $\quad N(4)$;

$$
\begin{equation*}
N(4)=160 \tag{A1}
\end{equation*}
$$

(iii) $\quad N^{-1}(90)$.

$$
\begin{equation*}
N^{-1}(90)=3 \tag{A1}
\end{equation*}
$$

(b) Find the range of N.
$N(5)$
$=10(5)^{2}$
$=250$
Thus, the range of N is $0 \leq N \leq 250, N \in \mathbb{R}$. (A1)
(c) In the context of this question, interpret the meaning of $N^{-1}(40)=2$.

There are 40 in a culture, 2 hours after it has been established.
(d) Find an expression of $N^{-1}(t)$.
$N=10 t^{2}$
$\rightarrow t=10 N^{2} \quad$ Interchange t and $N(\mathrm{M} 1)$
$0.1 t=N^{2}$
$N=\sqrt{0.1 t}$
$\therefore N^{-1}(t)=\sqrt{0.1 t}$

Exercise 2.1

Transfers from the airport to a passenger's living place have various prices. The price $P(a)$ dollars of the journey when the passenger lives a kilometres from the airport is given by $P(a)=0.8 a^{2}+50$, where $0 \leq a \leq 50$.
(a) Write down
(i) $\quad P(0)$;
(ii) $\quad P^{-1}(70)$.
(b) Find the range of P.
(c) In the context of this question, interpret the meaning of $P^{-1}(370)=20$.
(d) Find an expression of $P^{-1}(a)$.

Example 2.2

Let $\$ C$ be the cost of manufacturing a cubical block of side $x \mathrm{~cm}$. It is given that C is directly proportional to the square root of x, and the cost of manufacturing a cubical block of side 9 cm is $\$ 36$.
(a) Express C in terms of x.

Let $C=k \sqrt{x}$, where $k \neq 0 . \quad C=k \sqrt{x}(\mathrm{M} 1)$
$36=k \sqrt{9}$
$k=12$
$\therefore C=12 \sqrt{x}$
(b) Write down the cost of manufacturing a cubical block of side 16 cm .

Suppose that the extra cost $\$ 24$ is taken into account.
(c) Find the length of the side of a cubical block with cost $\$ 48$.

$$
48=12 \sqrt{x}+24
$$

Correct equation (A1)
$24=12 \sqrt{x}$
$2=\sqrt{x}$
$x=4$
Thus, the required length is 4 cm .
The cost factor r is defined as $r=10+C^{2}$.
(d) Express r in terms of x.

$$
\begin{aligned}
& =10+C^{2} \\
& =10+(12 \sqrt{x})^{2} \\
& =10+144 x
\end{aligned}
$$

$$
\begin{aligned}
& 10+(12 \sqrt{x})^{2}(\mathrm{M} 1) \\
& (\mathrm{A} 1)
\end{aligned}
$$

Exercise 2.2

Let $\$ P$ be the price of a tetrahedron model of surface area of $A \mathrm{~cm}^{2}$. It is given that P is inversely proportional to A. When $A=16, P=15$.
(a) Express P in terms of A.
(b) Write down the price of a tetrahedron model of surface area of $80 \mathrm{~cm}^{2}$.
(c) Interpret the condition on the price of a tetrahedron model of a large surface area.

The price factor α is defined as $\alpha=\frac{14400}{P^{2}}$.
(d) Express α in terms of A.

Important Notes

Quadratic function: A polynomial function with the greatest power of x equals to 2

Properties of a quadratic function in its general form $y=a x^{2}+b x+c, a \neq 0$

1. $\quad a>0$: Opens upward

$a<0$: Opens downward

2. $c: y$-intercept of the graph
3. $x=h$: Equation of the axis of symmetry of the graph
4. $h=-\frac{b}{2 a}=\frac{p+q}{2}: x$-coordinate of the vertex of the graph
5. $k=a h^{2}+b h+c: y$-coordinate of the vertex of the graph, which is also the extreme (maximum when $a<0$ /minimum when $a>0$) value of y

Root(s) of the quadratic equation $a x^{2}+b x+c=0: x$-intercept(s) of the graph of the corresponding quadratic function $y=a x^{2}+b x+c$

Example 2.3

A ball is kicked from the top of a vertical cliff onto a horizontal grass ground. The path of the ball can be modelled by the quadratic curve $y=-x^{2}+4 x+20$, where $x \mathrm{~m}$ and $y \mathrm{~m}$ are the horizontal distance from the cliff and the vertical distance above the ground respectively, as shown in the diagram below.

(a) Write down the vertical height of the cliff.

20 m
(A1)
(b) Find the maximum height of the trajectory of the ball.

By considering the graph of $y=-x^{2}+4 x+20$, the coordinates of the maximum point are $(2,24)$.
\therefore The required maximum height is 24 m .
GDC approach (M1)
(c) Write down the horizontal distance of the ball from the cliff when the ball is at the same vertical level when the ball is first kicked.

4 m
(d) Find the horizontal distance from the cliff to the position at which the ball hits the grass ground.
$-x^{2}+4 x+20=0$
Correct equation (A1)
By considering the graph of $y=-x^{2}+4 x+20$, the horizontal intercept is 6.8989795 .

GDC approach (M1)
\therefore The required horizontal distance is 6.90 m . (A1)
(e) State, for this model,
(i) an appropriate domain for x;
$0 \leq x \leq 6.90, x \in \mathbb{R}$
(ii) an appropriate range for y.
$0 \leq y \leq 24, y \in \mathbb{R}$
(f) Write down one possible limitation of using $y=-x^{2}+4 x+20$ to model the path of the ball.

The model does not consider air resistance. (R1)

Exercise 2.3

In a right-angled triangle, the lengths of the two shorter sides are $(x-18) \mathrm{cm}$ and $(x-1) \mathrm{cm}$ respectively. The area $A \mathrm{~cm}^{2}$ of the triangle is given by $A=0.5 x^{2}-9.5 x+9$.
(a) Write down the area of the triangle when $x=20$.
(b) State, for this model,
(i) an appropriate domain for x;
(ii) an appropriate range for A.

Consider the case when the area of the triangle is $55 \mathrm{~cm}^{2}$.
(c) (i) Find x.
(ii) Hence, find the corresponding perimeter.

Important Notes

Exponential function: A function with x to be the power (exponent) of a positive real number other than 1

Properties of an exponential function in the form $y=a^{x}$, base $a \in \mathbb{R}^{+}$

1. $a>1$: Exponentially increase $0<a<1$: Exponentially decrease

2. $a^{0}=1: y$-intercept of the graph
3. $x \in \mathbb{R}$: Domain of $y=a^{x}$
4. $y>0, y \in \mathbb{R}$: Range of $y=a^{x}$
5. $y=0$: Equation of the horizontal asymptote of the graph

Properties of a logarithmic function in the form $y=\log _{a} x$, base $a \in \mathbb{R}^{+}$

1. $y=\log _{a} x$ is the inverse function of $y=a^{x}$
2. $a>1$: Increase

$0<a<1$: Decrease

3. 1: x-intercept of the graph
4. $x>0, x \in \mathbb{R}$: Domain of $y=\log _{a} x$
5. $y \in \mathbb{R}$: Range of $y=\log _{a} x$
6. $x=0$: Equation of the vertical asymptote of the graph
7. $y=\log x\left(=\log _{10} x\right)$: Logarithmic function of the common base (base 10)
8. $y=\ln x\left(=\log _{e} x\right)$: Natural logarithmic function of the base e, where $e=2.718281828 \cdots$ is the exponential number

Example 2.4

A town is concerned about pollution, and decides to look at the number of people using private cars. At the end of 2023, there were 500 private cars in the town. After t years the number of private cars, N, in the city is given by $N=N_{0} e^{k t}, N_{0}$, $k>0, t \geq 0$.
(a) Show that $N_{0}=500$.

$$
\begin{align*}
& 500=N_{0} e^{k(0)} \tag{1}\\
& N_{0}=500 \tag{AG}
\end{align*}
$$

$$
N=500 \& t=0(\mathrm{~A} 1)
$$

There are 710 private cars at the end of 2026.
(b) Find k.

$$
\begin{array}{ll}
710=500 e^{k(3)} & N=710 \& t=3 \text { (A1) } \\
500 e^{3 k}-710=0 &
\end{array}
$$

By considering the graph of $y=500 e^{3 k}-710$, the horizontal intercept is 0.1168856 .
$\therefore k=0.117$

GDC approach (M1)
(c) Find the year in which the number of private cars is triple the number of private cars there were at the end of 2023.
$500(3)=500 e^{0.1168856 t}$
Correct equation (A1)
$3=e^{0.1168856 t}$
$e^{0.1168856 t}-3=0$
By considering the graph of $y=e^{0.1168556 t}-3$,
the horizontal intercept is 9.3990388 .
\therefore The required year is 2033 .

GDC approach (M1)
(A1)

Applications and Interpretation Standard Level for IBDP Mathematics - Functions

Another study suggests that the relationship between N and t shall be defined by an alternative model $t=-49.7+18.3 \log _{10} N$.
(d) Find, under the new model, the year in which the number of private cars is triple the number of private cars there were at the end of 2023.
t
$=-49.7+18.3 \log _{10}(500(3)) \quad N=500(3)(\mathrm{M} 1)$
$=8.422470041$
\therefore The required year is 2032 .

Exercise 2.4

A population of Bulbul birds, P, can be modelled by the equation $P=P_{0} e^{k t}$, where P_{0} is the initial population of Bulbul birds and t is measured in decades. After one decade (ten years), it is estimated that the population is 10% less than the initial population.
(a) Find k, correct the answer to four decimal places.
(b) Hence, interpret the meaning of the value of k.
(c) Find the least number of complete years such that the population of Bulbul birds is half of the initial population.

A population of Zebra finches, Q, can be modelled by the equation $t=71-18.8 \log _{10} Q$, where t is measured in decades.
(d) Find, under the new model, the least number of complete years such that the population of Zebra finches reaches 3000 for the first time.

Important Notes

Consider any two points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ on a $x-y$ plane:

1. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$: Slope (gradient) of PQ
2. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$: Distance between P and Q
3. $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right):$ The mid-point of PQ

Consider any two straight lines L_{1} and L_{2} with corresponding slopes m_{1} and m_{2} respectively:

1. $m_{1}=m_{2}$ if L_{1} and L_{2} are parallel $\left(L_{1} / / L_{2}\right)$
2. $m_{1} \times m_{2}=-1$ if L_{1} and L_{2} are perpendicular $\left(L_{1} \perp L_{2}\right)$
$y-y_{1}=m\left(x-x_{1}\right)$: The point-slope formula to find the equation of a straight line with slope m and a fixed point $\left(x_{1}, y_{1}\right)$ on the line

Forms of equations of straight lines:

1. $y=m x+c$: Slope-intercept form with slope m and y-intercept c
2. $A x+B y+C=0$: General form, where $A \in \mathbb{Z}^{+}, B, C \in \mathbb{Z}$

Axes intercepts of a straight line:

1. Substitute $y=0$ and make x the subject to find the x-intercept
2. Substitute $x=0$ and make y the subject to find the y-intercept

Example 2.5

A line joins the points $\mathrm{A}(10,3)$ and $\mathrm{B}(-2,-7)$.
(a) Find the gradient of the line AB .

The gradient

$$
\begin{align*}
& =\frac{-7-3}{-2-10} \\
& =\frac{5}{6} \tag{A1}
\end{align*}
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}(\mathrm{M} 1)
$$

Let M be the midpoint of the line $A B$.
(b) (i) Write down the coordinates of M.

$$
\begin{equation*}
(4,-2) \tag{A1}
\end{equation*}
$$

(ii) Hence, find the exact distance between A and M .

The exact distance

$$
\begin{aligned}
& =\sqrt{(4-10)^{2}+(-2-3)^{2}} \\
& =\sqrt{61}
\end{aligned}
$$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad(\mathrm{M} 1)
$$

(c) Find the equation of the line perpendicular to $A B$ and passing through M, giving the answer in slope-intercept form.

The required slope
$=-1 \div \frac{5}{6}$
$=-\frac{6}{5}$
The equation:
$y-(-2)=-\frac{6}{5}(x-4)$
$y-y_{1}=m\left(x-x_{1}\right)(\mathrm{M} 1)$
$y+2=-\frac{6}{5} x+\frac{24}{5}$
$y=-\frac{6}{5} x+\frac{14}{5}$

Exercise 2.5

A line joins the points $\mathrm{A}(0,-9)$ and $\mathrm{B}(-8,1)$.
(a) Find the gradient of the line AB .

Let M be the midpoint of the line $A B$.
(b) (i) Write down the coordinates of M.
(ii) Hence, find the exact distance between B and M.
(c) Find the equation of the line perpendicular to AB and passing through B , giving the answer in general form.

